![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > General
This volume of the Methods in Molecular Biology series is entirely devoted to the study of steroid receptor biology. Steroid hormone receptors represent a powerful system for the study of both the most fundamental molecular mec- nisms of gene regulation and control and the gross physiological responses of organisms to steroid hormones. Research in this field has brought forth advances in the treatment of cancer, endocrine disorders, and reproductive biology, and allowed elucidation of the fundamental biological mechanisms of gene expr- sion. In Steroid Receptor Methods: Protocols and Assays, the reader will find a collection of methods and protocols submitted by many fine steroid receptor researchers from throughout the world. These authors have been instructed to create a highly informative cross-section of the latest research techniques ava- able. The resulting work is timely, useful, and approachable for both the ex- rienced researcher and the novice to the field. Because the steroid receptor family is represented by a wonderfully diverse, yet strongly interrelated set of steroid receptor proteins, Steroid Receptor Methods contains protocols for the prod- tion and purification of a variety of receptor forms, including the progesterone, glucocorticoid, and androgen receptors. These procedures provide the raw ma- rial needed to conduct sophisticated biochemical analysis of receptor properties. Other techniques presented allow the reader to perform biochemical experiments on DNA binding characteristics, hormone binding assays, and protocols using combinatorial chemistry for drug discovery.
From a review of Volume 1: ''...well worth the attention of quantum chemists...the high quality of the contents augurs well for future volumes in the series.''-Nature This latest volume describes nuclear motion in isolated molecules, an important bridge between theoretical studies of molecular structure and experimentally observed vibration and vibration-rotation spectra.
High Throughput Bioanalytical Sample Preparation: Methods and
Automation Strategies is an authoritative reference on the current
state-of-the-art in sample preparation techniques for bioanalysis.
This book focuses on high throughput (rapid productivity)
techniques and describes exactly how to perform and automate these
methodologies, including useful strategies for method development
and optimization. A thorough review of the literature is included
within each of these chapters describing high throughput sample
preparation techniques: protein removal by precipitation;
equilibrium dialysis and ultrafiltration; liquid-liquid extraction;
solid-phase extraction; and various on-line techniques.
Drawing on state-of-the-art cellular and molecular techniques as
well as new and sophisticated imaging and information technologies,
this comprehensive, three-volume collection of cutting-edge
protocols provides readily reproducible methods for studying and
analyzing the events of embryonic development. Volume 1 (ISBN:
089603-574-3) contains techniques for establishing and
characterizing several widely used experimental model systems, for
the study of developmental patterns and morphogenesis, and for the
examination of embryo structure and function. There are also
step-by-step methods for the analaysis of cell lineage, the
production and use of chimeras, and the experimental and molecular
manipulation of embryos, including the application of viral
vectors. Volume 2 (ISBN: 0-89603-575-1) describes state-of-the-art
methods for the study of organogenesis, the analysis of abnormal
development and teratology, the screening and mapping of novel
genes and mutations, and the application of transgenesis, including
the production of transgenic animals and gene knockouts. No less
innovative, Volume 3 (ISBN: 0-89603-576-X) introduces powerful
techniques for the manipulation of developmental gene expression
and function, the analysis of gene expression, the characterization
of tissue morphogenesis and development, the in vitro study of
differentiation and development, and the genetic analysis of
developmental models of diseases. Highly practical and richly
annotated, the three volumes of Developmental Biology Protocols
describe multiple experimental systems and details techniques
adopted from the broadest array of biomedical disciplines.
Computers have revolutionized the analysis of sequencing data. It is unlikely that any sequencing projects have been performed in the last few years without the aid of computers. Recently their role has taken a further major step forward. Computers have become smaller and more powerful and the software has become simpler to use as it has grown in sophistication. This book reflects that change since the majority of packages described here are designed to be used on desktop computers. Computer software is now available that can run gels, collect data, and assess its accuracy. It can assemble, align, or compare multiple fragments, perform restriction analyses, identify coding regions and specific motifs, and even design the primers needed to extend the sequencing. Much of this soft ware may now be used on relatively inexpensive computers. It is now possible to progress from isolate d DNA to database submission without writing a single base down. To reflect this progression, the chapters in our Sequence Data Analysis Guidebook are arranged, not by software package, but by fimction. The early chapters deal with examining the data produced by modem automated sequenc ers, assessing its quality, and removing extraneous data. The following chap ters describe the process of aligning multiple sequences in order to assemble overlapping fragments into sequence contigs to compare similar sequences from different sources. Subsequent chapters describe procedures for compar ing the newly derived sequence to the massive amounts of information in the sequence databases."
Intravenous infusion is a necessary mode of delivery for many pharmaceuticals currently on the market or undergoing clinical trials. The technique of prolonged intravenous delivery in conscious, free-moving animal models has broadened the opportunity to study and evaluate the safety and efficacy of these therapeutic products. For the first time, the collective sciences involved in the understanding of this mode of drug delivery and the methodologies for carrying it out are brought together in a comprehensive work, Non-Clinical Vascular Infusion Technology, Two Volume Set: Science and Techniques. Volume I: The Science covers the scientific principles behind the delivery systems, from both physical and physiological standpoints. It addresses body fluid dynamics, describes the scientific processes necessary to understand the various aspects of the physico-chemical issues relating to vascular infusion delivery, and discusses vascular infusion dynamics. It also considers all the essential elements of the preparation of a formulation intended for vascular delivery as well as assessment of compatibility of the formulation with the dosing apparatus. Volume II: The Techniques builds upon the highly praised Handbook of Pre-Clinical Continuous Intravenous Infusion and provides a current account of the techniques and equipment involved in all the major laboratory animal species for conducting successful vascular infusion studies with xenobiotics. It is organized by species, including all those commonly used in pre-clinical studies: rat, mouse, dog, minipig, large primate, and marmoset. There are also chapters on juvenile studies and reproductive toxicity studies. Each section addresses the selection of the best model, surgical and non-surgical best practices, practical techniques, equipment selection, and commonly encountered background pathologies. Using a fresh approach, the authors identify best practices to be shared across the industry, and provide guidance on choices for the most acceptable methodologies from an animal welfare perspective. This two-volume set provides a foundation of knowledge on infusion technology and its importance for safe clinical use of substances via this route of delivery.
Drawing on state-of-the-art cellular and molecular techniques as well as new and sophisticated imaging and information technologies, this comprehensive, three-volume collection of cutting-edge protocols provides readily reproducible methods for studying and analyzing the events of embryonic development. Volume 1 (ISBN: 089603-574-3) contains techniques for establishing and characterizing several widely used experimental model systems, for the study of developmental patterns and morphogenesis, and for the examination of embryo structure and function. There are also step-by-step methods for the analaysis of cell lineage, the production and use of chimeras, and the experimental and molecular manipulation of embryos, including the application of viral vectors. Volume 2 (ISBN: 0-89603-575-1) describes state-of-the-art methods for the study of organogenesis, the analysis of abnormal development and teratology, the screening and mapping of novel genes and mutations, and the application of transgenesis, including the production of transgenic animals and gene knockouts. No less innovative, volume 3 (ISBN: 0-89603-576-X) introduces powerful techniques for the manipulation of developmental gene expression and function, the analysis of gene expression, the characterization of tissue morphogenesis and development, the in vitro study of differentiation and development, and the genetic analysis of developmental models of diseases. Highly practical and richly annotated, the three volumes of Developmental Biology Protocols describe multiple experimental systems and details techniques adopted from the broadest array of biomedical disciplines.
Providing specialist reviews and analyses of contemporary theories, algorithms, and techniques, this series aims to facilitate the effective exploitation of available computing power. The current volume focuses on the theoretical determination of atomic and molecular properties as related to wave functions, electron densities, and total energies.
Radiography with neutrons can yield important information not obtainable by more traditional methods. In contrast to X-rays as the major tool of visual non-destructive testing, neutrons can be attenuated by light materials like water, hydrocarbons, boron, penetrate through heavy materials like steel, lead, uranium, distinguish between different isotopes of certain elements, supply high quality radiographs of highly radioactive components. These advantages have led to multiple applications of neutron radiography since 1955, both for non-nuclear and nuclear problems of quality assurance. The required neutron beams originate from radioisotopic sources, accelerator targets, or research reactors. Energy "tailoring" which strongly influences the interaction with certain materials adds to the versatility of the method. Since about 1970 norms and standards have been introduced and reviewed both in Europe (Birmingham, September 1973) and the United States (Gaithersburg, February 1975). The first world conference on neutron radiography will take place in December 1981, in San Diego, U.S.A. . In Europe the interested laboratories inside the European Community have entered into systematic collaboration through the Neutron Radiography Working Group (NRWGl. since May 1979. This Handbook has been compiled as one of the common tasks undertaken by the Group. Its principal authors are J.C. Domanus (Ris0 National Laboratory). and R.S. Matfield (Joint Research Centre, Ispra) Major contributions have been received from R. Liesenborgs (SCK/CEN Mol) R. Barbalat (CEN Saclayl.
The quality of human life has been maintained and enhanced for generations by the use of trees and their products. In recent years, ever rising human population growth has put a tremendous pressure on trees and tree products; growing awareness of the potential of previously unexploited tree resources; and environmental pollution have both accelerated the development of new technologies for tree propagation, breeding and improvement. Biotechnology of trees may be the answer to solve the problems which can not be solved by conventional breeding methods. The combination of biotechnology and conventional methods such as plant propagation and breeding could become a novel approach to improving and multiplying a large number of the trees and woody plants. So far, plant tissue culture technology has largely been exploited by commercial companies in propagation of ornamentals, especially foliage house plants. Generally, tissue culture of woody plants has been recalcitrant. However, limited success has been achieved in tissue culture of angiosperm and gymnosperm woody plants. A number of recent reports on somatic embryogenesis in woody plants such as Norway spruce (Picea abies), Loblolly pine (Pinus taeda), Sandalwood (Santalum album), Citrus and mango (Mangifera indica), offer a ray of hope for inexpensive clonal propagation for large-scale production of plants or 'emblings' or somatic seedlings; protoplast work; cryopreservation; genetic transformation; and synthetic or artificial or manufactured seed production.
The aim of MHC Protocols is to document protocols that can be used for the analysis of genetic variation within the human major histocompatibility complex (MHC; HLA region). The human MHC encompasses approximately 4 million base pairs on the short arm of chromosome 6 at cytogenetic location 6p21. 3. The region is divided into three subregions. The telomeric class I region contains the genes that encode the HLA class I molecules HLA-A, -B, and -C. The centromeric class II region contains the genes encoding the HLA class II molecules HLA-DR, -DQ, and -DP. In between is the class III region, originally identified because it contains genes encoding components of the complement pathway. The entire human MHC has recently been sequenced (1) and each subregion is now known to contain many other genes, a number of which have immunological functions. The study of polymorphism within the MHC is well established, because the region contains the highly polymorphic HLA genes. HLA polymorphism has been used extensively in solid organ and bone marrow transplantation to match donors and recipients. As a result, large numbers of HLA alleles have been identified, a process that has been further driven by recent interest in HLA gene diversity in ethnic populations. The extreme genetic variation in HLA genes is believed to have been driven by the evolutionary response to infectious agents, but relatively few studies have analyzed associations between HLA genetic variation and infectious disease, which has been difficult to demonstrate.
Drawing on state-of-the-art cellular and molecular techniques as
well as new and sophisticated imaging and information technologies,
this comprehensive, three-volume collection of cutting-edge
protocols provides readily reproducible methods for studying and
analyzing the events of embryonic development. Volume 1 (ISBN:
089603-574-3) contains techniques for establishing and
characterizing several widely used experimental model systems, for
the study of developmental patterns and morphogenesis, and for the
examination of embryo structure and function. There are also
step-by-step methods for the analaysis of cell lineage, the
production and use of chimeras, and the experimental and molecular
manipulation of embryos, including the application of viral
vectors. Volume 2 (ISBN: 0-89603-575-1) describes state-of-the-art
methods for the study of organogenesis, the analysis of abnormal
development and teratology, the screening and mapping of novel
genes and mutations, and the application of transgenesis, including
the production of transgenic animals and gene knockouts. No less
innovative, Volume 3 (ISBN: 0-89603-576-X) introduces powerful
techniques for the manipulation of developmental gene expression
and function, the analysis of gene expression, the characterization
of tissue morphogenesis and development, the in vitro study of
differentiation and development, and the genetic analysis of
developmental models of diseases. Highly practical and richly
annotated, the three volumes of Developmental Biology Protocols
describe multiple experimental systems and details techniques
adopted from the broadest array of biomedical disciplines.
This book brings together original work from a number of authors who have made significant contributions to the evolution and use of nonstandard computing methods in chemistry and pharmaceutical industry. The contributions to this book cover a wide range of applications of Soft Computing to the chemical domain. Soft Computing applications are able to approximate many different kinds of real-world systems; to tolerate imprecision, partial truth, and uncertainty; and to learn from their environment and generate solutions of low cost, high robustness, and tractability. Presented applications are the optimization of the structure of atom clusters, the design of safe textile materials, real-time monitoring of pollutants in the workplace, quantitative structure-activity relationships, the analysis of Mössbauer spectra, the synthesis of methanol or the use of bioinformatics in the clustering of data within large biochemical databases. With this diverse range of applications, the book appeals to professionals, researchers and developers of software tools for the design of Soft Computing-based systems in chemistry and pharmaceutical industry, and to many others within the computational intelligence community.
Annual Reports in Computational Chemistry is a new periodical
providing timely and critical reviews of important topics in
computational chemistry as applied to all chemical disciplines.
Topics covered include quantum chemistry, molecular mechanics,
force fields, chemical education, and applications in academic and
industrial settings. Each volume is organized into (thematic)
sections with contributions written by experts. Focusing on the
most recent literature and advances in the field, each article
covers a specific topic of importance to computational chemists.
Annual Reports in Computational Chemistry is a 'must' for
researchers and students wishing to stay up-to-date on current
developments in computational chemistry.
Purification of Laboratory Chemicals: Part Two, Inorganic Chemicals, Catalysts, Biochemicals, Physiologically Active Chemicals, Nanomaterials, Ninth Edition describes contemporary methods for the purification of chemical compounds. The work includes tabulated methods taken from literature for purifying thousands of individual commercially available chemical substances. To help in applying this information, the more common processes currently used for purification in chemical laboratories and new methods are discussed. For dealing with substances not separately listed, another chapter is included, setting out the usual methods for purifying specific classes of compounds. Laboratory workers, whether carrying out research or routine work, will invariably need to consult this book. Apart from the procedures described, the large amount of physical data about listed chemicals is essential. This fully updated, revised and expanded new edition includes the purification of many new substances that have been available commercially since 2017, along with previously available substances which have found new applications.
Investigation of the structure and function of biological molecules through spectroscopic methods is a field rich in revealing, clever techniques and demanding experiments. It is most gratifying to see that the basic concepts are applied to more and more complex systems, making feasible the study of the behaviour of whole systems in relation to molecular disturbances. The analytical potential of spectroscopy and spectroscopic imaging enables species identification of bacteria and tissue recognition. Clear opportunities for in vivo applications become apparent in the medical field. The methods developed in biophysics start to generate spin-off in the direction of biotechnology, where in previous years we have seen this happen for biochemical techniques. New directions are manifest. Tools are being developed to investigate the behaviour of single molecules in interaction with their environment. Individual interactions can now be investigated and individual molecules in complexes can be visualized. Processes that were previously unobservable as a result of ensemble averaging can now be investigated on a single molecule level. Completely new information with regard to molecular behaviour is obtained in this way. The insights amaze us and the prospect that this development will continue is exciting. The 8th European Conference on the Spectroscopy of Biological Molecules is proud to have contributed to the dissemination of these new directions. This proceedings book is an appropriate reflection of the progress obtained so far in the spectroscopy of biological molecules.
The first book to chronicle how innovation in laboratory designs for botanical research energized the emergence of physiological plant ecology as a vibrant subdiscipline  Laboratory innovation since the mid-twentieth century has powered advances in the study of plant adaptation, evolution, and ecosystem function. The phytotron, an integrated complex of controlled-environment greenhouse and laboratory spaces, invented by Frits W. Went in the 1950s, set off a worldwide laboratory movement and transformed the plant sciences. Sharon Kingsland explores this revolution through a comparative study of work in the United States, France, Australia, Israel, the USSR, and Hungary.  These advances in botanical research energized physiological plant ecology. Case studies explore the development of phytotron spinoffs such as mobile laboratories, rhizotrons, and ecotrons. Scientific problems include the significance of plant emissions of volatile organic compounds, symbiosis between plants and soil fungi, and the discovery of new pathways for photosynthesis as an adaptation to hot, dry climates. The advancement of knowledge through synthesis is a running theme: linking disciplines, combining laboratory and field research, and moving across ecological scales from leaf to ecosystem. The book also charts the history of modern scientific responses to the emerging crisis of food insecurity in the era of global warming.
Antigen processing and presentation, as a field, explores a broad range of protein interactions and functions, both intracellular (in the cytoplasm and in the endoplasmic reticulum) and at the cell surface (between T cells and MHC molecules). To investigate such a diverse array, it is necessary that biochemical, cell biology, and immunological techniques all be employed. The purpose of Antigen Processing and Presentation Protocols is therefore to detail the most up-to-date techniques being used in this burgeoning field. Such techniques include those used to question how MHC-binding peptides are generated, to test how peptides are delivered to MHC molecules, to analyze MHC peptide-binding patterns, and to assay the T-cell response to MHC/peptide. Antigen Processing and Presentation Protocols should aid both those new and those experienced in this area of research in extending the questions that can be asked and answered by the application of these current methods. For editorial assistance, I would like to thank Angela Beninga and Rachael Turnquist.
The lipases and phospholipases represent a diverse group of enzymes that are expressed in animals, plants, fungi, and bacteria. Their ubiquitous distribution among all species is a testament to the essential roles played by these enzymes in lipid storage, mobilization and metabolism, membrane homeostasis and remodeling, endocrine and immune functions, and signal tra- duction. In humans, lipases and phospholipases are also thought to contribute to complex diseases, such as atherosclerosis, obesity, arthritis, and cancer, as well as to single gene defects, such as Wolman's disease and Type I hyperlipoproteinemia. Enzymatically, the lipases are unique, since they hydrolyze substrates that are either insoluble, or only partly soluble, in aq- ous solvents; thus, enzyme catalysis takes place at a lipid-water interface. The interface comprises at least two, and often more, discrete bulk and s- face phases, in which the enzyme, substrate, and products oflipolysis disperse among these phases based on their physical properties. Furthermore, the d- tribution of these components changes continuously as lipolysis proceeds. Thus, the lipases and phospholipases are fundamentally different from any other enzyme because of the physical complexity of the environment in which catalysis occurs.
Spark scientific curiosity from a young age with this six-level course through an enquiry-based approach and active learning. Collins International Primary Science fully meets the requirements of the Cambridge Primary Science Curriculum Framework from 2020 and has been carefully developed for a range of international contexts. The course is organised into four main strands: Biology, Chemistry, Physics and Earth and Space and the skills detailed under the ‘Thinking and Working Scientifically’ strand are introduced and taught in the context of those areas. For each Workbook at Stages 1 to 6, we offer: A write-in Workbook linked to the Student’s Book New language development activities help build science vocabulary Earth and Space content covers the new curriculum framework Thinking and Working Scientifically deepens and enhances the delivery of Science skills Actively learn through practical activities that don’t require specialist equipment or labs Scaffolding allows students of varying abilities to work with common content and meet learning objectives Supports Cambridge Global Perspectives™ with activities that develop and practise key skills Provides learner support as part of a set of resources for the Cambridge Primary Science curriculum framework (0097) from 2020 This series is endorsed by Cambridge Assessment International Education to support the new curriculum framework 0097 from 2020.
It was the objective of the ASI on "Advances in High Pressure Studies of Chemical and Biochemical Systems" to present the current status of such studies and to emphasize the advances achieved during the nine years since the previous ASI on "High Pressure Chemistry." These advances are partly due to the improved instrumentation enabling static and dynamic measurements at pressures several orders of magnitude higher than before, and partly due to the more general availability of high pressure equipment. This has led to a remarkable development in various areas of physics and chemistry, and especially in biochemistry. Throughout the presentation of this Advanced Study Institute the emphasis fell on the teaching character of such a summer school, and the contributions in this volume are of such a nature. Following a general introduction to modern high pressure research, a series of chapters on theoretical and experimental studies of gases, fluids and solids at high temperatures and pressures are presented with special emphasis on the physical aspects involved. Instrumentation used in such studies, viz. shock compression, NMR spectroscopy, laser scattering, x-ray and neutron scattering, and vibrational spectroscopy are treated in detail. The subsequent chapters are devoted to the application of high pressure techniques in the broad areas of organic, inorganic and biochemistry_ The formal lectures were supplemented by 29 contributed papers, for which a list of titles is included.
A mixture of two polymers, or one polymer and a salt, in an aqueous medium separates into two phases: this phenomenon is useful in biotechn- ogy for product separations. Separation of biological molecules and particles in these aqueous two-phase systems (ATPS) was initiated over 40 years ago by P.-A. Albertsson, and later proved to be of immense utility in biochemical and cell biological research. A boost in the application of ATPS was seen when problems of separations in biotechnology processes were encountered. Its simplicity, biocompatibility, and amenability to easy scaleup operations make the use of ATPS very attractive for large-scale bioseparations. Despite the advantages ATPS enjoys over other separation techniques, the application of two-phase systems has for a long time been confined to selected labora- ries. Recent years have, however, shown a trend in which increasing numbers of researchers employ two-phase partitioning techniques in both basic and applied research."
This book volume has been divided into three sections and contains a total of 23 chapters. Section A contains eleven chapters covering topics such as studies of embryo development and cell biology of white spruce, proliferative somatic embryogenesis in woody species, somatic embryo germination and desiccation tolerance in conifers, performance of conifer somatic seedlings, apoptosis during early somatic embryogenesis, water relation parameters in conifer embryos, image analysis of somatic embryos, somatic embryogenesis in woody legumes, cold storage and crypreservation, and commercialization of plant somatic embryogenesis. Section B comprisis six chapters dealing with angiosperm woody plants such as somatic embryogenesis in myrtaceous plants, Laurus nobilis, Simarouba glauca, Magnolia spp., Juglans cinera, and somatic embryogenesis and evaluation of variability in somatic seedlings of Quercus serrata by RAPD markers. The chapters contained in Section C are focussed on somatic embryogenesis in gymnosperms, including Pinus patula, Encephalartos, Picea wilsonii, Pinus banksiana, hybrid firs, and Taxus. All the mansucripts have been peer reviewed and revised accordingly to improve the quality of these chapters. The final manuscripts were submitted as camera- ready to publication, and editors had no opportunity to go through them again before the final printing. Authors were advised to prepare final camera-ready manuscripts carefully to avoid any mistakes. Therefore, editors are not respon- sible for mistakes, if any, in this book volume. We are grateful to all the book chapter contributors for submitting their manuscripts in time, and to the reviewers for giving their free time to review the manuscripts.
Spark scientific curiosity from a young age with this six-level course through an enquiry-based approach and active learning. Collins International Primary Science fully meets the requirements of the Cambridge Primary Science Curriculum Framework from 2020 and has been carefully developed for a range of international contexts. The course is organised into four main strands: Biology, Chemistry, Physics and Earth and Space and the skills detailed under the 'Thinking and Working Scientifically' strand are introduced and taught in the context of those areas. For each Student's Book at Stages 1 to 6, we offer: A full colour and highly illustrated Student's Book Photo-rich spreads show that science is 'real' and puts it into context Earth and Space content covers the new curriculum framework Thinking and Working Scientifically deepens and enhances the delivery of Science skills Actively learn through practical activities that don't require specialist equipment or labs Scaffolding allows students of varying abilities to work with common content and meet learning objectives Supports Cambridge Global Perspectives (TM) with activities that develop and practise key skills Provides learner support as part of a set of resources for the Cambridge Primary Science curriculum framework (0097) from 2020 This series is endorsed by Cambridge Assessment International Education to support the new curriculum framework 0097 from 2020. |
You may like...
Exploring Evaluator Role and Identity
Katherine E. Ryan, Thomas A. Schwandt
Hardcover
R2,560
Discovery Miles 25 600
The Encyclopedia of Parenting Theory and…
Charles A. Smith
Hardcover
Cinderella II - Dreams Come True
Christopher D. Barnes, Susanne Blakeslee, …
DVD
(1)R124 Discovery Miles 1 240
|