![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > General
In hierdie verbeterde, uitgebreide en aangepaste uitgawe van Algemende Plantkunde is die benadering steeds om basiese plantkunde, die vakwetenskap wat oor plante handel, aan studente bekend te stel. Die boek bied aan studente op voorgraadse vlak 'n waardevolle biologies-wetenskaplike basis. Die skrywers, onder leiding van HP van der Schijff, is gemoeid met die bekende, byna klassieke, maar tog moderne vorm van plantkunde om sodoende die hedendaagse student en navorser tot diens te wees, en aan hom/haar 'n onderbou te gee in die werklikheid van vorm, bou , funksie en voortplanting van die plante waarmee hy/sy werk.
The Annual Beltsville Symposium serves as a forum for presenting recent developments in basic research that contribute solutions to agricultural problems. The eleventh in this series focuses on instrumentation tech niques which provide powerful new research tools. These tools will provide information that can lead to a better understanding of biological and physical processes critical to the solution of today's agricultural problems. The tools discussed include isotope technology, separation techniques, microscopy, electro-magnetic spectroscopy, resonance and mass spectrometry and microcomputers. This Symposium brought together scientists who are at the forefront of the development of many of these tools and those who are applying them to problems directly related to agricultural research. WALDEMAR KLASSEN, Director Beltsville Area VII CONTRIBUTORS AND THEIR AFFILIATIONS Norman G. Anderson Youhanna Fares Proteus Technologies, Inc. Phytokinetics Inc. Rockville, MD 20852 College Station, TX 77840 U.S.A. U.S.A. Cherie L. Fisk Edwin D. Becker Office of Research Services Office of Research Services NIH NIH Bethesda, MD 20892 Bethesda, MD 20892 U.S.A. U.S.A. Klaus Biemann John D. Goeschl Phytokinetics, Ltd. Department of Chemistry College Station, TX 77840 Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A. U.S.A. R.J. Griesbach Florist and Nursery Crops Laboratory B.A. Bolton Development Quality Laboratory Horticultural Science Institute Agricultural Research Service USDA Western Regional Research Center Beltsville, MD 20705 Agricultural Research Service USDA U.S.A. Albany, CA 94710 U.S.A."
Transposable elements are short lengths of DNA with the capacity to move between different points within a genome. This process can affect the function of genes at or near the insertion site. The present book gives an overview of the impact of transposable elements on plant genomes and explains how to recognize and study transposable elements, e.g. by using state-of-the-art strategies like "new generation sequencing." Moreover, the impact of transposable elements on plant genome structure and function is reviewed in detail, and also illustrated in examples and case studies. The book is intended both for readers familiar with the field and for newcomers. With large-scale sequencing becoming increasingly available, more and more people will come across transposable element sequences in their data, and this volume will hopefully help to convince them that they are not just "junk DNA."
Weeds hold an enigmatic and sometimes-controversial place in agriculture, where they are generally reviled, grudgingly tolerated, and occasionally admired. In most cases, growers make considerable effort to reduce the negative economic impact of weeds because they compete with crops for resources and hinder field operations, thereby affecting crop productivity and quality, and ultimately the sustainability of agriculture. Weed control in production agriculture is commonly achieved through the integration of chemical, biological, and mechanical management methods. Chemicals (herbicides) usually inhibit the growth and establishment of weed plants by interfering with various physiological and biochemical pathways. Biological methods include crop competition, smother crops, rotation crops, and allelopathy, as well as specific insect predators and plant pathogens. Mechanical methods encompass an array of tools from short handled hoes to sophisticated video-guided robotic machines. Integrating these technologies, in order to relieve the negative impacts of weeds on crop production in a way that allows growers to optimize profits and preserve human health and the environment, is the science of weed management.
With an ever-increasing demand for more food supply, agricultural scientists will have to search for new ways and technologies to promote food production. In recent decades, plant growth regulators (PGRs) have made great strides in promoting plant growth and development. PGRs are organic compounds which have the ability to dramatically affect physiological plant processes when present in extremely low concentrations (in the range of micro-to picograms). Although all higher plants have the ability to synthesize PGRs endogenously, they do respond to the exogenous sources most likely due to not having the capacity to synthesize sufficient endogenous phytohormones for optimal growth and development under given climatic and environmental conditions. In recent years, PGRs have established their position as a new generation of agrochemicals after pesticides, insecticides and herbicides. Interest in the commercial use of PGRs for improving plant growth and crop yields is also increasing because of their non-polluting nature. The use of PGRs in the post-harvest technology is well established and many new breakthroughs have recently been revealed.
The 18 chapters making up In Vitro Haploid Production in Higher Plants are divided into two sections. Section 1 (eight chapters) covers historical and fundamental aspects of haploidy in crop improvement. Section 2 deals with methods of haploid production, including anther culture, micropore culture, ovary culture, pollination with irradiated pollen, in vitro pollination, and special culture techniques, including polyhaploid production in the Triticeae by sexual hybridization, the influence of ethylene and gelling agents on anther culture, conditional lethal markers, and methods of chromosome doubling.
This book is a collection of experimental studies demonstrating structure-function relationships in various biological systems having particular surface specialization to increase/decrease friction and adhesion. Studies on snake skin, adhesive pads, wing-interlocking devices and sticky mouthparts of insects as well as anti-adhesive and adhesive surfaces of plants are included in the volume containing four main subsections: (1) adhesion, (2) friction, (3) attachment-devices, (4) attachment-related behavior. Numerous experimental methods for characterizing tribological properties of biological surfaces at macro-, micro-, and nanoscale levels are demonstrated. This book is an excellent collection of publications on biotribology for both engineers and physicists working with biological systems as well as for biologists studying friction and adhesion. Inspirations from biology reported here may be also potentially interesting for biomimetics.
This volume will lay out the best methods for measuring net primary productivity (NPP) in ecological research. Primary productivity is the rate at which energy is stored in the organic matter of plants per unit area of the earth's surface. NPP is the beginning point of the carbon cycle, so our ability to accurately measure NPP is important. The book includes chapters for each of the critical biome types to offer special techniques that work best in each biome. For example, there are chapters that discuss grassland ecosystems, urban ecosystems, marine pelagic ecosystems, forest ecosystems, and salt marsh ecosystems, among others. All 26 LTER sites will be expected to collect and report data using these methods, but ecologists more generally should also find these methods useful and authoritative. Currently no standard methods or standards exist. Measuring NPP is fundamental to many ecosystem studies at thousands of sites, and having identified standards and methods would be extremely useful for comparing measurements among sites and for compiling a broad scale understanding of the environmental, biological, and nutrition controls on NPP. This book would resemble the Standard Soil Measurement volume in the LTER series in that it reaches well beyond any single LTER site to apply to any ecosystem. It should be rather more widely used than the soil measurements volume, in that measuring productivity is so fundamental to any ecological analyses as well as agronomy, forestry, fisheries, limnology and oceanography.
Diazotrophic bacteria convert atmospheric nitrogen to plant-useable form and this input of nitrogen through biological fixation is of great agronomic importance. The contributions presented in this volume relate to free-living nitrogen fixers and the diazotrophs associated with plants. Symbiotic association of Frankia with non-legumes and cyanobacterial associations are also discussed. Research topics covered in this volume include the biochemistry and genetics of diazotrophs, recent developments in improvement of plant-microbe interactions and their molecular basis, the use of molecular probes in taxonomy and ecology of diazotrophs and reports on field applications, agronomic importance and improvement in methodologies for assessing their contribution to plants. This book provides valuable information not only for researchers working in the field of biological nitrogen fixation but also for biochemistry, molecular biologists, microbiologists and agronomists.
Plant protoplasts have proved to be an excellent tool for in vitro manipulation, somatic hybridization, DNA uptake and genetic trans- formation, and for the induction of somac1onal variation. These studies reflect the far-reaching impact of protoplast research in agriculture and forest biotechnology. Taking these aspects into consideration, the series of books on Plant Protoplasts and Genetic Engineering provides a survey of the literature, focusing on recent information and the state of the art in protoplast manipulation and genetic transformation. This book, Plant Protoplasts and Genetic Engineering VII, like the previous six volumes published in 1989, 1993, 1994, and 1995, is unique in its approach. It comprises 27 chapters dealing with the regeneration of plants from protoplasts, and genetic transformation in various species of Agrostis, Allium, Anthriscus, Asparagus, Avena, Boehmeria, Carthamus, Coffea, Funaria, Geranium, Ginkgo, Gladiolus, Helianthus, Hordeum, Lilium, Lithospermum, Mentha, Panax, Papaver, Passiflora, Petunia, Physcomi- trella, Pinus, Poa, Populus, Rubus, Saintpaulia, and Swertia. This book may be of special interest to advanced students, teachers, and research scientists in the field of plant tissue culture, molecular biology, genetic engineering, plant breeding, and general biotechnology. New Delhi, June 1996 Professor y. P. S. BAJAJ Series Editor Contents Section I Regeneration of Plants from Protoplasts 1. 1 Regeneration of Plantlets from Protoplasts of Allium cepa (Onion) E. E. HANSEN, J. F. HUBSTENBERGER, and G. C. PHILLIPS (With 3 Figures) 1 Introduction ...3 2 Protoplast Isolation ...4 3 Protoplast Culture ...8 4 Regeneration of Plantlets ...9 5 Summary...
From the pre-historic era to modern times, cereal grains have been the most important source of human nutrition, and have helped sustain the increasing population and the development of human civilization. In order to meet the food needs of the 21st century, food production must be doubled by the year 2025, and nearly tripled by 2050. Such enormous increases in food productivity cannot be brought about by relying entirely on conventional breeding methods, especially on less land per capita, with poor quality and quantity of water, and under rapidly deteriorating environmental conditions. Complementing and supplementing the breeding of major food crops, such as the cereals, which together account for 66% of the world food supply, with molecular breeding and genetic manipulation may well provide a grace period of about 50 years in which to control population growth and achieve sustainable development. In this volume, leading world experts on cereal biotechnology describe the production and commercialization of the first generation of transgenic cereals designed to substantially reduce or prevent the enormous losses to cereal productivity caused by competition with weeds, and by various pests and pathogens, which is an important first step in that direction.
This volume assembles protocols for chromosome engineering and genome editing in two recently developed approaches for manipulating chromosomal and genomic DNA in plants. The first approach is a "plant chromosome vector" system, which allows the introduction of desired genes or DNA into target sites on the chromosome vector, particularly by sequence-specific recombination. The second approach is "genome-editing," which makes it possible to introduce mutations into any of the genes of DNA that we wish to change. In addition, this book also covers other related techniques used to accelerate progress in plant chromosome and genome engineering. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Chromosome and Genomic Engineering in Plants: Methods and Protocols provides a comprehensive source of protocols and other necessary information to anyone interested in this field of study.
This book presents a flavour of activities focussed on the need for sustainably produced biomass to support European strategic objectives for the developing bioeconomy. The chapters cover five broad topic areas relating to the use of perennial biomass crops in Europe. These are: 'Bioenergy Resources from Perennial Crops in Europe', 'European Regional Examples for the Use of Perennial Crops for Bioenergy', 'Genotypic Selection of Perennial Biomass Crops for Crop Improvement', 'Ecophysiology of Perennial Biomass Crops' and 'Examples of End-Use of Perennial Biomass Crops'. Two major issues relating to the future use of biomass energy are the identification of the most suitable second generation biomass crops and the need to utilise land not under intensive agricultural production, broadly referred to as 'marginal land'. The two main categories of plants that fit these needs are perennial rhizomatous grasses and trees that can be coppiced. The overarching questions that are addressed in the book relate to the suitability of perennial crops for providing feedstocks for a European bioeconomy and the need to exploit environments for biomass crops which do not compete with food crops. Bioenergy is the subject of a wide range of national and European policy measures. New developments covered are, for example, the use of perennial grasses to produce protein for animal feed and concepts to use perennial biomass crops to mitigate carbon emissions through soil carbon sequestration. Several chapters also show how prudent selection of suitable genotypes and breeding are essential to develop high yielding and sustainable second generation biomass crops which are adapted to a wide range of unfavourable conditions like chilling and freezing, drought, flooding and salinity. The final chapters also emphasise the need to be kept an eye out for potential new end-uses of perennial biomass crops that will contribute further to the developing bioeconomy.
More than a decade has passed since Professor Gisela Jahn completed Volume 12 of the Handbook of Vegetation Science, dealing with the application of vegetation science in forestry, mostly European forestry. The volume was well received by the critics with the exception that they wanted a more diversified demonstration of forestry-related vegetation science work and a wider representation of forest types from different continents. The topics covered in this volume, 12/1, widen the scope of vegetation science work in forestry over the phytosociological work which was the main focus in the Handbook as perceived by Dr Tuxen. Section 1. Overview T. Kira: Forest Ecosystems of East and Southeast Asia in a Global Perspective; E.O. Box: Climatic Relations of the Forests of East and Southeast Asia; K. Iwatsuki: Species Diversity in East Asia in Global Perspective. The remaining contributions are divided into the following sections: Evergreen Forest Region; Summergreen Forest Region; Montane/Boreal Region; Tropical Forest Region. "
Proceedings of part of the Symposium 'Numerical Syntaxonomy and Syndynamics' held in Unovce near Galanta, Slovakia, May 18-23, 1987
The analysis of vegetation history is one of the prime objectives for vegetation scientists. In order to understand the recent composition of local floras and plant communities a second knowledge of species com position during recent millenia is essential. With the present concern over climate changes, due to human activities, an understanding of past vegeta tion distribution becomes even more important, since the correlation between climate and vegetation can often be used to predict possible impacts to crops and forests. I was very fortunate to receive the help of Drs. Webb and Huntley to compile this volume on vegetation history. They have collated an impres sive set of papers which together give an account of the vegetation history of most of the continents during the late-Tertiary and Quaternery periods. There are, however, gaps in the coverage achieved, most notably Africa, and Asia apart from Japan. The information in this book will nonetheless certainly be used widely by vegetation scientists for the regions covered in the book and much of it has relevance to the areas not explicitly described. The authors of the individual chapters have done their best to cover recent topics of interest as well as established facts. It is intended that a separate volume will be produced in the near future covering the vegetation history of Africa and Asia. I thank the editors of It fits well into the this volume for their commendable achievement."
As forests decline in temperate and tropical climates, highly-developed countries and those striving for greater economic and social benefits are beginning to utilize marginal forests of high-latitude and mountainous regions for resources to satisfy human needs. The benefits of marginal forests range from purely aesthetic to providing resources for producing many goods and services demanded by a growing world population. Increased demands for forest resources and amenities and recent warming of high latitude climates have generated interest in reforestation and afforestation of marginal habitats in cold regions. Afforestation of treeless landscapes improves the environment for human habitation and provides for land use and economic prosperity. Trees are frequently planted in cold climates to rehabilitate denuded sites, for the amenity of homes and villages, and for wind shelter, recreation, agroforestry, and industrial uses. In addition, forests in cold climates reduce the albedo of the earth's surface in winter, and in summer they are small but significant long-lived sinks for atmospheric carbon dioxide. Finally, growth and reproductive success of forests at their geographic limits are sensitive indices of climatic change. As efforts to adapt forests to cold climates increase, however, new afforestation problems arise and old ones intensify. Austral, northern, and altitudinal tree limits are determined by many different factors. Current hypotheses for high-latitude tree limits are based on low growing-season temperatures that inhibit plant development and reproduction."
The discovery of DNA as the genetic material brought great hope to scientists all over the world. It was believed that many of the lingering questions in genetics and the mechanisms of heredity would fnally be answered. However, as often is the case in science, more qu- tions arose out of this discovery. What defnes a gene? What are the mechanisms of gene regulation? Further discovery and technological innovations brought about sequencing techniques that allowed the study of complete genomes from many organisms, including Arabidopsis and humans. Despite all the excitement surrounding these technologies, many features of the genome remained unclear. Peculiar characteristics in genome composition such as signifcant redundancy consisting of many repetitive elements and noncoding sequences, active transcriptional units with no protein product, and unusual sequences in promoter regions added to the mysteries of genetic make-up and gene regulation. Indeed, the more we discovered about the genome, the more diffcult it became to understand the complexity of cellular function and regulation. Out of the study of the intricacies of the genome and gene regulation, arose a new science that was independent of actual DNA changes, but critical in maintaining gene regulation and genetic stability. Epigenetics, literally translated as "above genetics," is the science that describes the mechanisms of heritable changes in gene regulation that does not involve modifcations of DNA sequence. These changes may last through somatic cell division and, in some cases, throughout multiple generations.
Plants have cultural histories, as their applications change over time and with place. Some plant species have affected human cultures in profound ways, such as the stimulants tea and coffee from the Old World, or coca and quinine from South America. Even though medicinal plants have always attracted considerable attention, there is surprisingly little research on the interface of ethnobotany and medical anthropology. This volume, which brings together (ethno-)botanists, medical anthropologists and a clinician, makes an important contribution towards filling this gap. It emphasises that plant knowledge arises situationally as an intrinsic part of social relationships, that herbs need to be enticed if not seduced by the healers who work with them, that herbal remedies are cultural artefacts, and that bioprospecting and medicinal plant discovery can be viewed as the epitome of a long history of borrowing, stealing and exchanging plants. Elisabeth Hsu is Reader in Social Anthropology at the University of Oxford, where she has convened its master's courses in medical anthropology since 2001. Based on her earlier studies in biology (botany), linguistics and sinology, she has published widely on the history and anthropology of Chinese medicine. Stephen Harris was awarded a Ph.D. in plant systematics from the University of St. Andrews in 1990. He has been the Druce Curator of Oxford University Herbaria since 1995 and has published over 50 peer-reviewed papers on genetics and systematics associated with the evolutionary consequences of plant-human interactions. |
You may like...
Wearable Technologies - Concepts…
Information Reso Management Association
Hardcover
R9,401
Discovery Miles 94 010
Rebel Ideas - The Power of Diverse…
Matthew Syed, Matthew Syed Consulting Ltd
Paperback
Embodied - The psychology of physical…
Christopher Eccleston
Paperback
R1,839
Discovery Miles 18 390
|