![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
'Direct Microbial Conversion of Biomass to Advanced Biofuels' is a stylized text that is rich in both the basic and applied sciences. It provides a higher level summary of the most important aspects of the topic, addressing critical problems solved by deep science. Expert users will find new, critical methods that can be applied to their work, detailed experimental plans, important outcomes given for illustrative problems, and conclusions drawn for specific studies that address broad based issues. A broad range of readers will find this to be a comprehensive, informational text on the subject matter, including experimentalists and even CEOs deciding on new business directions.
Biotechnology in Healthcare, Technologies and Innovations, Volume One presents up-to-date knowledge on the emerging field of biotechnology as applied to the healthcare industry. Sections cover 3D printing, tissue engineering, synthetic biology, nano-biotechnology, omics, precision medicine, gene therapy, vaccine development, predictive healthcare, entrepreneurship, financing, business models, product development and marketing in the sector. This is a valuable source for biotechnologists, bioinformaticians, clinicians and members of biomedical and healthcare fields who need to understand more about the promising developments of the emerging field of biotechnology in healthcare.
A compilation of up to date reviews of topics in biotechnology and the medical field.
The Elsevier book-series "Advances in Planar Lipid Bilayers and Liposomes' (APLBL) provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature and find their application in the formulation of biomimetic model membranes and in the design of artificial dispersion of liposomes. Moreover, lipids self-assemble into a wide range of other structures including micelles and the liquid crystalline hexagonal and cubic phases. Consensus has been reached that curved membrane phases do play an important role in nature as well, especially in dynamic processes such as vesicles fusion and cell communication. Self-assembled lipid structures have enormous potential as dynamic materials ranging from artificial lipid membranes to cell membranes, from biosensing to controlled drug delivery, from pharmaceutical formulations to novel food products to mention a few. An assortment of chapters in APLBL represents both an original research as well as comprehensives reviews written by world leading experts and young researchers.
Biotechnology has prompted a revolution in science and society in the truest sense of the word. For what superficially appears to be a revolution in biotechnology, in effect touches upon the fundamentals of life and the way in which humans relate to it. This book will make a significant contribution to the debate surrounding the effective regulation of biotechnology. The contributing authors assess how regulatory regimes can accommodate the many different and often conflicting issues to which biotechnology is giving rise to (including a very tainted public image). The book's ultimate aim is to explore ways of designing a regulatory regime that takes heed of these different demands whilst, at the same time, answering to the imperatives of effectiveness and efficiency. The book synthesizes three fields of legal analysis; the first focuses on the risk-dominated regulation of GM food and bio-agriculture; the second involves human genetics as a field dominated by considerations of ethics. Finally, patent law has been chosen as an area captured by notions of property. With its holistic approach, The Regulatory Challenge of Biotechnology will be of great interest to academics, policymakers and regulators as well as biotechnology and law students.
The advances in microsystems offer new opportunities and capabilities to develop systems for biomedical applications, such as diagnostics and therapy. There is a need for a comprehensive treatment of microsystems and in particular for an understanding of performance limits associated with the shrinking scale of microsystems. The new edition of Microsystems for Bioelectronics addresses those needs and represents a major revision, expansion and advancement of the previous edition. This book considers physical principles and trends in extremely scaled autonomous microsystems such as integrated intelligent sensor systems, with a focus on energy minimization. It explores the implications of energy minimization on device and system architecture. It further details behavior of electronic components and its implications on system-level scaling and performance limits. In particular, fundamental scaling limits for energy sourcing, sensing, memory, computation and communication subsystems are developed and new applications such as optical, magnetic and mechanical sensors are presented. The new edition of this well-proven book with its unique focus and interdisciplinary approach shows the complexities of the next generation of nanoelectronic microsystems in a simple and illuminating view, and is aimed for a broad audience within the engineering and biomedical community.
Despite advances in alternative materials, metals are still the biomaterial of choice for a number of clinical applications such as dental, orthopedic and cardiac implants. However, there are a number of intrinsic problems associated with implanting metal in the biological environment, such as wear, corrosion, biocompatibility and toxicity, which must be addressed. Modern technology has enabled scientists to modify metal surfaces or apply special coatings to metals to improve their performance safety. Surface Coating and Modification of Metallic Biomaterials will discuss the most important modification techniques and coatings for metals, first covering the fundamentals of metals as a biomaterial and then exploring surface modification techniques and coatings.
Tissue engineering involves seeding of cells on bio-mimicked scaffolds providing adhesive surfaces. Researchers though face a range of problems in generating tissue which can be circumvented by employing nanotechnology. It provides substrates for cell adhesion and proliferation and agents for cell growth and can be used to create nanostructures and nanoparticles to aid the engineering of different types of tissue. Written by renowned scientists from academia and industry, this book covers the recent developments, trends and innovations in the application of nanotechnologies in tissue engineering and regenerative medicine. It provides information on methodologies for designing and using biomaterials to regenerate tissue, on novel nano-textured surface features of materials (nano-structured polymers and metals e.g.) as well as on theranostics, immunology and nano-toxicology aspects. In the book also explained are fabrication techniques for production of scaffolds to a series of tissue-specific applications of scaffolds in tissue engineering for specific biomaterials and several types of tissue (such as skin bone, cartilage, vascular, cardiac, bladder and brain tissue). Furthermore, developments in nano drug delivery, gene therapy and cancer nanotechonology are described. The book helps readers to gain a working knowledge about the nanotechnology aspects of tissue engineering and will be of great use to those involved in building specific tissue substitutes in reaching their objective in a more efficient way. It is aimed for R&D and academic scientists, lab engineers, lecturers and PhD students engaged in the fields of tissue engineering or more generally regenerative medicine, nanomedicine, medical devices, nanofabrication, biofabrication, nano- and biomaterials and biomedical engineering.
Microbial Biotechnology is wide-ranging, multi-disciplinary activities which include recombinant DNA techniques, cloning and the application of microbes to the production of goods from bread to antibiotics. This book is an attempt to highlight the significant aspects of the vast subject area of microbial biotechnology likes bioinformatics tool for PCR primer designing, fungal biotransformations, bioremediation by microbes, natural products from fungi, microbial diversity etc to provide a complete overview of the subject. It also addresses the role of bacterial plasmid in xenobiotic degradation, antimicrobial resistance in bacteria, ultraviolet-B radiation effect on microbes and human health. The book will be valuable to the researchers, biologist, microbiologist, scientists, post graduate students of microbiology, agriculture, biotechnology and medical science also.
Advances in Plant Tissue Culture: Current Developments and Future Trends provides a complete and up-to-date text on all basic and applied aspects of plant tissue cultures and their latest application implications. It will be beneficial for students and early-career researchers of plant sciences and plant/agricultural biotechnology. Plant tissue culture has emerged as a sustainable way to meet the requirements of fresh produces, horticultural crops, medicinal or ornamental plants. Nowadays, plant tissue culture is an emerging filed applied in various aspects, including sustainable agriculture, plant breeding, horticulture and forestry. This book covers the latest technology, broadly applied for crop improvement, clonal propagation, Somatic hybridization Embryo rescue, Germplasm conservation, genetic conservation, or for the preservation of endangered species. However, these technologies also play a vital role in breaking seed dormancy over conventional methods of conservation.
Applied plant genomics and biotechnology reviews the recent advancements in the post-genomic era, discussing how different varieties respond to abiotic and biotic stresses, investigating epigenetic modifications and epigenetic memory through analysis of DNA methylation states, applicative uses of RNA silencing and RNA interference in plant physiology and in experimental transgenics, and plants modified to produce high-value pharmaceutical proteins. The book provides an overview of research advances in application of RNA silencing and RNA interference, through Virus-based transient gene expression systems, Virus induced gene complementation (VIGC), Virus induced gene silencing (Sir VIGS, Mr VIGS) Virus-based microRNA silencing (VbMS) and Virus-based RNA mobility assays (VRMA); RNA based vaccines and expression of virus proteins or RNA, and virus-like particles in plants, the potential of virus vaccines and therapeutics, and exploring plants as factories for useful products and pharmaceuticals are topics wholly deepened. The book reviews and discuss Plant Functional Genomic studies discussing the technologies supporting the genetic improvement of plants and the production of plant varieties more resistant to biotic and abiotic stresses. Several important crops are analysed providing a glimpse on the most up-to-date methods and topics of investigation. The book presents a review on current state of GMO, the cisgenesis-derived plants and novel plant products devoid of transgene elements, discuss their regulation and the production of desired traits such as resistance to viruses and disease also in fruit trees and wood trees with long vegetative periods. Several chapters cover aspects of plant physiology related to plant improvement: cytokinin metabolism and hormone signaling pathways are discussed in barley; PARP-domain proteins involved in Stress-Induced Morphogenetic Response, regulation of NAD signaling and ROS dependent synthesis of anthocyanins. Apple allergen isoforms and the various content in different varieties are discussed and approaches to reduce their presence. Euphorbiaceae, castor bean, cassava and Jathropa are discussed at genomic structure, their diseases and viruses, and methods of transformation. Rice genomics and agricultural traits are discussed, and biotechnology for engineering and improve rice varieties. Mango topics are presented with an overview of molecular methods for variety differentiation, and aspects of fruit improvement by traditional and biotechnology methods. Oilseed rape is presented, discussing the genetic diversity, quality traits, genetic maps, genomic selection and comparative genomics for improvement of varieties. Tomato studies are presented, with an overview on the knowledge of the regulatory networks involved in flowering, methods applied to study the tomato genome-wide DNA methylation, its regulation by small RNAs, microRNA-dependent control of transcription factors expression, the development and ripening processes in tomato, genomic studies and fruit modelling to establish fleshy fruit traits of interest; the gene reprogramming during fruit ripening, and the ethylene dependent and independent DNA methylation changes.
This document is exclusively dedicated to DNA. It explains the secrets of DNA from all corners. Presented in a simple, lucid manner; it will useful to all involved in bioscience. In all it consists 12 chapters, figures, photos and a wholesome glossary of the terms related to DNA.
Microorganisms are ubiquitous and indispensable for the existence of mankind. They show diversity in size, shape, metabolism and the range of positive functions they perform for sustaining the life on this planet. Bacteria have been exploited by the mankind since times immemorial for the production of various foods and enzymes. They reveal several types of metabolic reactions which are absent in eukaryotic organisms. The present book highlights the potential of microorganisms in solving the global energy crisis. Presently, the world is facing energy crisis due to depleting fossil fuels which are expected to get exhausted during the next 50 yeaOne of the alternative energy resources for the new millennium is expected to be the renewable energy including biomass from which a variety of biofuels can be obtained by the exploitation of microbes. This volume has been organized in 13 s which have been prepared to provide the readers with both an in-depth study and a broad perspective of microorganisms for sustainability of mankind. Further, it makes the readers familiar with the diversity in energy generating pathways among different groups of microorganisms and different types of biomass energy resources available on this planet and the various possibilities which can be exploited for converting these in to alternate energy sources with the help of microbes. A great effort has been made to provide the readers a comprehensive knowledge about different alternative fuels and value added products from microbes for the 21st century. It is hoped that this volume will prove useful to the students and professionals who are pursuing their career in Microbiology, Biotechnology, Biochemistry, Environmental sciences and Energy studies related to the alternate biofuels to solve the global energy crisis.
"Biotechnology and Biology of Trichoderma" serves as a
comprehensive reference on the chemistry and biochemistry of one of
the most important microbial agents, Trichoderma, and its use in an
increased number of industrial bioprocesses for the synthesis of
many biochemicals such as pharmaceuticals and biofuels. This book
provides individuals working in the field of Trichoderma,
especially biochemical engineers, biochemists and biotechnologists,
important information on how these valuable fungi can contribute to
the production of a wide range of products of commercial and
ecological interest.
Pharmacokinetics and Toxicokinetic Considerations explains the central principles, cutting-edge methodologies, and incipient thought processes applied to toxicology research. As part of the Advances in Pharmaceutical Product Development and Research series, the book provides expert literature on dose, dosage regimen and dose adjustment, medication errors, and approaches for its prevention, the concept of pharmacotherapy, and managed care in clinical interventions. It expounds on strategies to revamp the pharmacokinetics of the drug and the factors affecting the stability of drugs and their metabolites in biological matrices. Finally, the book offers focused elaborations on various bioanalytical methods for bioavailability and bioequivalence assessment and integrates the wide-ranging principles and concepts shared by toxicokinetics and pharmacodynamics as mutual crosstalk rather than isolated observations. It will be helpful to researchers and advanced students working in the pharmaceutical, cosmetics, biotechnology, food, and related industries including toxicologists, pharmacists, and pharmacologists.
Chitosan in Biomedical Applications provides a thorough insight into the complete chitosan chemistry, collection, chemical modifications, characterization and applications of chitosan in biomedical applications and healthcare fields. Chitosan, a biopolymer of natural origin, has been explored for its variety of applications in biomedical research, medical diagnostic aids and material science. It is the second most abundant natural biopolymer after cellulose, and considered as an excellent excipient because of its non-toxic, stable, biodegradable properties. Several research innovations have been made on applications of chitosan in biomedical applications. The book explores key topics, such as molecular weight, degree of deacetylation, and molecular geometry, along with an emphasis on recent advances in the field written by academic, industry, and clinical researchers. Chitosan in Biomedical Applications will be of interest to those in biomedical fields including the biomaterials and tissue engineering community investigating and developing biomaterials for biomedical applications, particularly graduate students, young faculty and others exploring chitosan-based materials.
Despite the recent advances made in the improvement of crucifer crops using conventional breeding techniques, the yield levels and the oil and meal quality could not be improved as expected. The understanding of genetic material (DNA/RNA) and its manipulation by scientists has provided the opportunity to improve crucifers by increasing its diversity beyond conventional genetic limitations. The application of the biotechnological techniques will have major impacts in two ways: first, it provides a number of techniques/methods for efficient selection for favorable variants and second, it gives an opportunity to utilize alien variation available in the crucifers by using the novel techniques of biotechnology to develop high yielding varieties with good nutritional quality, having resistance to insect, pest, and disease resistance.
knowledge on mycorrhiza-plant relationship has grown somewhat with slow pace until about 1970 when there was a sudden upsurge of interest on a specialized type of endomycorrhiza-vesicular arbuscular mycorrhiza VA Mycorrhiza. The prodigious research made during last three decades clearly established its widespread occurrence in various plant species and under different agro-climatic conditions covering broad ecological range including deserts, forest and mangroves. It was also established that this symbiotic association benefits the plants through enhanced nutrient uptake, biological control of root pathogens, and synergistic interaction with nitrogen fixing microorganisms, hormone production and drought resistance. In view of its utility to plants, this bio-tool has now attracted the attention of microbiologist. agronomist, horticulturist and foresters at global level. |
You may like...
Computational Mathematics, Numerical…
Mariano Mateos, Pedro Alonso
Hardcover
R3,988
Discovery Miles 39 880
Large-Scale Optimization with…
Lorenz T. Biegler, Thomas F. Coleman, …
Hardcover
R1,451
Discovery Miles 14 510
Degree Theory in Analysis and…
Irene Fonseca, Wilfrid Gangbo
Hardcover
R4,288
Discovery Miles 42 880
Nonlinear Analysis, Geometry and…
Diaraf Seck, Kinvi Kangni, …
Hardcover
R4,766
Discovery Miles 47 660
Nonlinear Combinatorial Optimization
Dingzhu Du, Panos M. Pardalos, …
Hardcover
Geometric Control Theory and…
Gianna Stefani, Ugo Boscain, …
Hardcover
R3,509
Discovery Miles 35 090
Variational Methods for Discontinuous…
Gianni Dal Maso, Franco Tomarelli
Hardcover
R2,409
Discovery Miles 24 090
|