![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for
medical applications. One chapter reviews the quantification of
bone mechanics at the whole-bone, micro-scale, and non-scale
levels, while others discuss biomineralization, osteoductivization,
materials to fill bone defects, and bioresorbable materials. Part
II focuses on biomaterials as scaffolds and implants, including
multi-functional scaffolds, bioceramics, and titanium-based foams.
Finally, Part III reviews further materials with the potential to
encourage bone repair and regeneration, including cartilage grafts,
chitosan, inorganic polymer composites, and marine organisms.
"Biotechnology and Biology of Trichoderma" serves as a
comprehensive reference on the chemistry and biochemistry of one of
the most important microbial agents, Trichoderma, and its use in an
increased number of industrial bioprocesses for the synthesis of
many biochemicals such as pharmaceuticals and biofuels. This book
provides individuals working in the field of Trichoderma,
especially biochemical engineers, biochemists and biotechnologists,
important information on how these valuable fungi can contribute to
the production of a wide range of products of commercial and
ecological interest.
Chitosan in Biomedical Applications provides a thorough insight into the complete chitosan chemistry, collection, chemical modifications, characterization and applications of chitosan in biomedical applications and healthcare fields. Chitosan, a biopolymer of natural origin, has been explored for its variety of applications in biomedical research, medical diagnostic aids and material science. It is the second most abundant natural biopolymer after cellulose, and considered as an excellent excipient because of its non-toxic, stable, biodegradable properties. Several research innovations have been made on applications of chitosan in biomedical applications. The book explores key topics, such as molecular weight, degree of deacetylation, and molecular geometry, along with an emphasis on recent advances in the field written by academic, industry, and clinical researchers. Chitosan in Biomedical Applications will be of interest to those in biomedical fields including the biomaterials and tissue engineering community investigating and developing biomaterials for biomedical applications, particularly graduate students, young faculty and others exploring chitosan-based materials.
Despite the recent advances made in the improvement of crucifer crops using conventional breeding techniques, the yield levels and the oil and meal quality could not be improved as expected. The understanding of genetic material (DNA/RNA) and its manipulation by scientists has provided the opportunity to improve crucifers by increasing its diversity beyond conventional genetic limitations. The application of the biotechnological techniques will have major impacts in two ways: first, it provides a number of techniques/methods for efficient selection for favorable variants and second, it gives an opportunity to utilize alien variation available in the crucifers by using the novel techniques of biotechnology to develop high yielding varieties with good nutritional quality, having resistance to insect, pest, and disease resistance.
Published since 1959, "Advances in Applied Microbiology" continues to be one of the most widely read and authoritative review sources in microbiology. The series contains comprehensive reviews of the most current research in applied microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays. Eclectic volumes are supplemented by thematic volumes on various
topics, including Archaea and sick building syndrome. Impact factor
for 2012: 4.974. Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field
Delivery Technologies for Immuno-Oncology: Volume 1: Delivery Strategies and Engineering Technologies in Cancer Immunotherapy examines the challenges of delivering immuno-oncology therapies. Immuno-oncology (IO) is a growing field of medicine at the interface of immunology and cancer biology leading to development of novel therapeutic approaches, such as chimeric antigen receptor T-cell (CAR-T) and immune checkpoint blockade antibodies, that are clinically approved approaches for cancer therapy. Although currently approved IO approaches have shown tremendous promise for select types of cancers, broad application of IO strategies could even further improve the clinical success, especially for diseases such as pancreatic cancer, brain tumors where the success of IO so far has been limited. Nanotechnology-based targeted delivery strategies could improve the delivery efficiency of IO agents as well as provide additional avenues for novel therapeutic and vaccination strategies. Additionally, a number of locally-administered immunogenic scaffolds and therapeutic strategies, such as the use of STING agonist, could benefit from rationally designed biomaterials and delivery approaches. Delivery Technologies for Immuno-Oncology: Volume 1: Delivery Strategies and Engineering Technologies in Cancer Immunotherapy creates a comprehensive treaty that engages the scientific and medical community who are involved in the challenges of immunology, cancer biology, and therapeutics with possible solutions from the nanotechnology and drug delivery side.
Today, the pressure on healthcare costs and resources is increasing, and especially for biopharmaceuticals that require parenteral administration, the inherent complex and invasive dosing procedure adds to the demand for efficient medical management. In light of the COVID-19 pandemic the value of drug delivery technologies in enabling a flexible care setting is broadly recognized. In such a setting, patients and their caregivers can choose the place of drug administration based on individual preferences and capabilities. This includes not only dosing in the clinic but also supervised at-home dosing and self-administration for eligible patients. Formulation and Device Lifecycle Management of Biotherapeutics: A Guidance for Researchers and Drug Developers covers the various aspects of improving drug delivery of biological medicines with the ultimate goal to reduce dosing complexity associated with parenteral administration and, thus, enhance patient experience and drug administration-related healthcare capacity. The target audience are multidisciplinary researchers and drug developers in the pharmaceutical industry, biotech companies, and academia involved in formulation and device development. This includes pharmacology and medical experts in charge of generating nonclinical and clinical data to support approval of novel dosing regimens, and drug delivery scientists and engineers responsible for technical particulars of product optimizations. Moreover, professionals in market access and commercial functions are expected to benefit from the discussions about the impact of patient and healthcare provider needs and country-specific reimbursement models on realizing a truly convenient and cost and resource efficient drug delivery solution.
Chitosan in Drug Delivery provides thorough insights into chitosan chemistry, collection, chemical modifications, characterization and applications in the pharmaceutical industry and healthcare fields. The book explores molecular weight, degree of deacetylation and molecular geometry, emphasizing recent advances in the field as written by academic, industry and regulatory scientists. It will be a useful resource for pharmaceutical scientists, including industrial pharmacists, analytical scientists, postgraduate students, health care professionals and regulatory scientists actively involved in pharmaceutical product and process development in natural polymers containing drug delivery.
Extensively revised and updated, the new edition of this valuable reference work provides a comprehensive and up-to-date analysis of the current knowledge and new research in Bacillus molecular and cellular biology.
Nanoparticle therapeutics: Production Technologies, Types of Nanoparticles, and Regulatory Aspects employs unique principles for applications in cell-based therapeutics, diagnostics and mechanistics for the study of organ physiology, disease etiology and drug screening of advanced nanoparticles and nanomaterials. The book focuses on the extrapolation of bioengineering tools in the domain of nanotechnology and nanoparticles therapeutics, fabrication, characterization and drug delivery aspects. It acquaints scientists and researchers on the experiential and experimental aspects of nanoparticles and nanotechnology to equip their rational application in various fields, especially in differential diagnoses and in the treatment of diverse diseased states. This complete resource provides a holistic understanding of the principle behind formation, characterization, applications, regulations and toxicity of nanoparticles employing myriad principles of nanotechnology. Investigators, pharmaceutical researchers, and advanced students working on technology advancement in the areas of designing targeted therapies, nanoscale imaging systems and diagnostic modalities in human diseases where nanoparticles can be used as a critical tool for technology advancement in drug delivery systems will find this book useful.
This book provides recent developments and future perspectives of pulp and paper processing based on biotechnology to replace conventional environmental unfriendly chemical processes. The use of microorganism and microbial enzymes in various processes such as bleaching, deinking, refining, dissolving pulp, debarking & pitch removal, slime control, wastewater treatment and waste material valorisation are discussed.
This title highlights the current and topical areas of research in this rapidly growing field. Expert authors from around the world provide the latest insights into the mechanisms these fascinating organisms use to survive.
"Synthetic Biology" provides a framework to examine key enabling components in the emerging area of synthetic biology. Chapters contributed by leaders in the field address tools and methodologies developed for engineering biological systems at many levels, including molecular, pathway, network, whole cell, and multi-cell levels. The book highlights exciting practical applications of synthetic biology such as microbial production of biofuels and drugs, artificial cells, synthetic viruses, and artificial photosynthesis. The roles of computers and computational design are discussed, as well as future prospects in the field, including cell-free synthetic biology and engineering synthetic ecosystems. Synthetic biology is the design and construction of new
biological entities, such as enzymes, genetic circuits, and cells,
or the redesign of existing biological systems. It builds on the
advances in molecular, cell, and systems biology and seeks to
transform biology in the same way that synthesis transformed
chemistry and integrated circuit design transformed computing. The
element that distinguishes synthetic biology from traditional
molecular and cellular biology is the focus on the design and
construction of core components that can be modeled, understood,
and tuned to meet specific performance criteria and the assembly of
these smaller parts and devices into larger integrated systems that
solve specific biotechnology problems.
Systemic Drug Delivery Strategies: Delivery Strategies and Engineering Technologies in Cancer Immunotherapy, Volume 2 examines the challenges of delivering immuno-oncology therapies, focusing specifically on the multiple technologies of affective drug delivery strategies. Immuno-oncology (IO) is a growing field of medicine at the interface of immunology and cancer biology leading to development of novel therapeutic approaches, such as chimeric antigen receptor T-cell (CAR-T) and immune checkpoint blockade antibodies, that are clinically approved approaches for cancer therapy. Although currently approved IO approaches have shown tremendous promise for select types of cancers, broad application of IO strategies could even further improve the clinical success, especially for diseases such as pancreatic cancer, brain tumors where the success of IO so far has been limited. This volume of Delivery Strategies and Engineering Technologies in Cancer Immunotherapy discusses methods of targeting tumors, CRISPR technology, and vaccine delivery among many other delivery strategies. Systemic Drug Delivery Strategies: Delivery Strategies and Engineering Technologies in Cancer Immunotherapy, Volume 2 creates a comprehensive treaty that engages the scientific and medical community who are involved in the challenges of immunology, cancer biology, and therapeutics with possible solutions from the nanotechnology and drug delivery side.
The fields of microfluidics and BioMEMS are significantly impacting cell biology research and applications through the application of engineering solutions to human disease and health problems. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. This new professional reference applies the techniques of microsystems to cell culture applications. The authors provide a thoroughly practical guide to the principles of microfluidic device design and operation and their application to cell culture techniques. The resulting book is crammed with strategies and techniques that can be immediately deployed in the lab. Equally, the insights into cell culture applications will provide those involved in traditional microfluidics and BioMEMS with an understanding of the specific demands and opportunities presented by biological applications. The goal is to guide new and interested researchers and
technology developers to the important areas and
state-of-the-practice strategies that will enhance the efficiency
and value of their technologies, devices and biomedical
products.
|
You may like...
Pedagogy for Conceptual Thinking and…
Masha Etkind, Uri Shafrir
Hardcover
R4,597
Discovery Miles 45 970
Research Anthology on Culturally…
Information R Management Association
Hardcover
R8,179
Discovery Miles 81 790
Eyeblink Classical Conditioning Volume 2…
Diana S. Woodruff-Pak, Joseph E. Steinmetz
Hardcover
R4,212
Discovery Miles 42 120
Cognition and Instruction - Twenty-five…
Sharon M. Carver, David Klahr
Hardcover
R5,530
Discovery Miles 55 300
|