![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
Rapid prototyping is used to design and develop medical devices and instrumentation. This book details research in rapid prototyping of bio-materials for medical applications. It provides a wide variety of examples of medical applications using rapid prototyping, including tissue engineering, dental applications, and bone replacement. Coverage also discusses the emergence of computer aided design in the development of prosthetic devices.
Exploring the mechanical features of biological cells, including their architecture and stability, this textbook is a pedagogical introduction to the interdisciplinary fields of cell mechanics and soft matter physics from both experimental and theoretical perspectives. This second edition has been greatly updated and expanded, with new chapters on complex filaments, the cell division cycle, the mechanisms of control and organization in the cell, and fluctuation phenomena. The textbook is now in full color which enhances the diagrams and allows the inclusion of new microscopy images. With around 280 end-of-chapter exercises exploring further applications, this textbook is ideal for advanced undergraduate and graduate students in physics and biomedical engineering. A website hosted by the author contains extra support material, diagrams and lecture notes, and is available at www.cambridge.org/Boal.
The observation of nature has been the inspiration for many materials, laws, and theories, as well as computational methods. Nature-Inspired computing Design, Development, and Applications covers all the main areas of natural computing, from methods to computationally synthesized natural phenomena, to computing paradigms based on natural materials. This volume is comprised of ideas and research from nature to develop computational systems or materials to perform computation. Researchers, academic educators, and professionals will find a comprehensive view of all aspects of natural computing with emphasis on its main branches.
This book is a unique resource for state-of-the-art research findings on biotechnological innovations in the area of industrial and therapeutic enzymes, and special-function and extreme-nature enzymes such as ribozymes, therozymes, cold-adapted enzymes, etc, covering all aspects such as the producing micro-organisms, their mode of cultivation, downstream processing and applications. It provides a great deal of information on potential of enzymes for their commercial exploitation. This book gives up-to-date information on advances in enzyme research useful to both the expert and researchers entering the field as well. The vital information has been organized in an easy-to-use format that lets readers become familiar with highlights of the most relevant topics and includes photographs, figures, and tables.
The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived.
Applications of microbial nanotechnology are currently emerging with new areas being explored. Biosynthesis of nanomaterials by microorganisms is a recently attracting interest as a new, exciting approach towards the development of 'greener' nanomanufacturing compared to traditional chemical and physical approaches. This book will cover recent advances of microbial nanotechnology in agriculture, industry, and health sectors.
Streptomycetes are unusually complex bacteria that are abundant in soil. They grow as branching filaments and form chains of spores. Most importantly, they have an extraordinary ability to make antibiotics, for which they are the main industrial source, as well as other metabolites with medicinal properties. In recent years, the search for new antibiotics and other drugs in streptomycetes has been augmented by genomic studies, genome mining, and new biotechnological approaches. With contributions from some of the leading scientists in the field, this book documents recent research and development in streptomycetes genomics, physiology, and metabolism. With a focus on biotechnology and genomics, the book provides an excellent source of up-to-date information. Topics include: genome architecture * conjugative genetic elements * differentiation * protein secretion * central carbon metabolic pathways * regulation of nitrogen assimilation * phosphate control of metabolism * gamma-butyrolactones and their role in antibiotic regulation * clavulanic acid and clavams * genome-guided exploration * gene clusters for bioactive natural products * genomics of cytochromes p450. The book is essential reading for research scientists, biotechnologists, graduate students, and other professionals involved in streptomycetes research, antibiotic and antimicrobial development, drug discovery, soil microbiology and related fields. It is a recommended text for all microbiology laboratories.
This book bridges the communication gap between neuroscientists and engineers through the unifying theme of correlation-based learning Developing brain-style signal processing or machine learning algorithms has attracted many sharp minds from a range of disciplines. Now, coauthored by four researchers with varying backgrounds in signal processing, neuroscience, psychology, and computer science, Correlative Learning unifies the many cross-fertilized ideas in computational neuroscience and signal processing in a common language that will help engineers understand and appreciate the human brain as a highly sophisticated biosystem for building more intelligent machines. First, the authors present the necessary neuroscience background for engineers, and then go on to relate the common intrinsic structures of the learning mechanisms of the brain to signal processing, machine learning, kernel learning, complex-valued domains, and the ALOPEX learning paradigm. This correlation-based approach to building complex, reliable (robust), and adaptive systems is vital for engineers, researchers, and graduate students from various fields of science and engineering. Figures, tables, worked examples, and case studies illustrate how to use computational tools for either helping to understand brain functions or fitting specific engineering applications, and a comprehensive bibliography covering over 1,000 references from major publications is included for further reading.
The Textbook of Ion Channels is a set of three volumes providing a wide-ranging reference source on ion channels for students, instructors, and researchers. Ion channels are membrane proteins that control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli like light, sound, odor, and taste, and regulate the response to physical stimuli like temperature and pressure. In non-excitable tissues, ion channels are instrumental for the regulation of basic salt balance that is critical for homeostasis. Ion channels are located at the surface membrane of cells, giving them the unique ability to communicate with the environment, as well as the membrane of intracellular organelles, allowing them to regulate internal homeostasis. Ion channels are fundamentally important for human health and diseases, and are important targets for pharmaceuticals in mental illness, heart disease, anesthesia, pain and other clinical applications. The modern methods used in their study are powerful and diverse, ranging from single ion-channel measurement techniques to models of ion channel diseases in animals, and human clinical trials for ion channel drugs. All three volumes give the reader an introduction to fundamental concepts needed to understand the mechanism of ion channels, a guide to the technical aspects of ion channel research, offer a modern guide to the properties of major ion channel families, and include coverage of key examples of regulatory, physiological, and disease roles for ion channels.
This book provides a broad overview how extremophiles can be used in biotechnology, including for the production and degradation of compounds. It reviews various recent discoveries and applications related to a large variety of extremophiles, considering both prokaryotes as well as eukaryotes.
This book describes an adaptable biothreat assessment process to complement overall biorisk management programs, incorporating threat management and the unique natures of biological assets. Further, this book examines the nexus between public health, international security, and developing technologies, building a case for augmenting biosecurity to levels beyond the laboratory constraints. With the face of biological and biomedical sciences changing, this book describes how with proper biosecurity development, these can become assets, rather than liabilities, to secure our world from natural and man-made biological disasters. The world is changing rapidly with respect to developing threats, such as terrorism, and dual-use technologies, such as synthetic biology, that are challenging how we think about biosafety and biosecurity. Further, the fields of public health and international security are colliding, as both of these share the common enemy: intentional or natural biological incidents. To date, biosecurity has been limited to laboratory-level application, and complicating efforts, and lacks credentialed biosecurity professionals skilled in both the biological sciences and threat management techniques. The result is a fragmented field of practice, with tremendous need, from the lab to the outbreak. Underpinning these principles is the SARS-CoV-2 coronavirus pandemic, providing a historic milestone to examine biosecurity through a global lens. This book describes biosecurity as a set of practices and principles to be augmented out of the constrained laboratory environment, and applied to larger efforts, such as international threat reduction and biological incident management.
"J R not only focuses on creation itself, but he also addresses the impact of words upon its primal beginning and its controversies." -Congressman Trent Franks God spoke the words of creation, but Scripture does not elaborate on the intricacies of this action. In "SpiritQuest 2: Interface with Creation," author JR McElfresh investigates many of the issues and controversies related to creation and considers the lack of answers to key questions. Designed for pastors, church leaders, and those who desire to learn more about pivotal creation issues and how the universe began, "SpiritQuest 2: Interface with" "Creation "probes into the issues of the relationship between scientific knowledge and the Word of God. This study takes a journey through quarks, quantum mechanics, sound, waveforms, creation's voice, energy, the miracles of Jesus, and a host of discoveries showing the relationship between God himself and the physical laws of the universe. McElfresh elaborates on the importance of the spoken and written word in Scripture, science, and the arena of linguistics in relation to creation; he also discusses the far-reaching impact of words as sounds and visual images on the human mind and thought. "SpiritQuest 2: Interface with Creation "demonstrates that words have immense power and energy and that it is wise to know how to use them.
Agriculture is considered as a backbone of developing nations as it caters the needs of the people, directly or indirectly. The global agriculture currently faces enormous challenges like land degradation and reduced soil fertility, shrinking of land, low production yield, water accessibility and a dearth of labor due to evacuation of individuals from farming. Besides, the global population increases at an exponential rate and it is predicted that the global population will be 9 billion by 2050 that in turn leads to food crisis in near future. Although, green revolution revolutionizes the agriculture sector by enhancing the yield but it was not considered as a sustainable approach. Exorbitant use of chemical fertilizers and pesticides to boost the crop yield is definitely not a convenient approach for agriculture sustainability in the light of the fact that these chemical fertilizers are considered as double-edged sword, which on one hand enhance the crop yield but at the same time possess deleterious effect on the soil microflora and thus declines its fertility. Besides, it cause irreversible damage to the soil texture and disrupts the equilibrium in the food chain across ecosystem, which might in turn lead to genetic mutations in future generations of consumers. Thus, the increased dependence on fabricated agricultural additives during and post green revolution has generated serious issues pertaining to sustainability, environmental impact and health hazards. Therefore, nano-biotechnology has emerged as a promising tool to tackle the above problems especially in the agriculture sector. Nano-agribusiness is an emerged field to enhance crop yield, rejuvenate soil health, provide precision farming and stimulate plant growth. Nano-biotechnology is an essential tool in modern agriculture and is considered as a primary economic driver in near future. It is evaluated that joining of cutting edge nanotechnology in agribusiness would push the worldwide monetary development to approximately US$ 3.4 trillion by 2020 which clearly indicates that how agri-nanobiotechnology plays a pivotal role in the agricultural sector, without any negative impact on the environment and other regulatory issues of biosafety. Agri-nanobiotechnology is an innovative green technology, which provides the solution to global food security, sustainability and climate change. The current book is presenting the role of nano-biotechnology in modern agriculture and how it plays a pivotal role to boost the agri-business.
Traditional methods in synthetic chemistry produce chemical waste and byproducts, yield smaller desired products, and generate toxic chemical substances, but the past two centuries have seen consistent, greener improvements in organic synthesis and transformations. These improvements have contributed to substance handling efficiency by using green-engineered forerunners like sustainable techniques, green processes, eco-friendly catalysis, and have minimized energy consumption, reduced potential waste, improved desired product yields, and avoided toxic organic precursors or solvents in organic synthesis. Green synthesis has the potential to have a major ecological and monetary impact on modern pharmaceutical R&D and organic chemistry fields. This book presents a broad scope of green techniques for medicinal, analytical, environmental, and organic chemistry applications. It presents an accessible overview of new innovations in the field, dissecting the highlights and green chemistry attributes of approaches to green synthesis, and provides cases to exhibit applications to pharmaceutical and organic chemistry. Although daily chemical processes are a major part of the sustainable development of pharmaceuticals and industrial products, the resulting environmental pollution of these processes is of worldwide concern. This edition discusses green chemistry techniques and sustainable processes involved in synthetic organic chemistry, natural products, drug syntheses, as well various useful industrial applications.
Fungi are an understudied, biotechnologically valuable group of organisms. Due to their immense range of habitats, and the consequent need to compete against a diverse array of other fungi, bacteria, and animals, fungi have developed numerous survival mechanisms. However, besides their major basic positive role in the cycling of minerals, organic matter and mobilizing insoluble nutrients, fungi have other beneficial impacts: they are considered good sources of food and active agents for a number of industrial processes involving fermentation mechanisms as in the bread, wine and beer industry. A number of fungi also produce biologically important metabolites such as enzymes, vitamins, antibiotics and several products of important pharmaceutical use; still others are involved in the production of single cell proteins. The economic value of these marked positive activities has been estimated as approximating to trillions of US dollars. The unique attributes of fungi thus herald great promise for their application in biotechnology and industry. Since ancient Egyptians mentioned in their medical prescriptions how they can use green molds in curing wounds as the obvious historical uses of penicillin, fungi can be grown with relative ease, making production at scale viable. The search for fungal biodiversity, and the construction of a living fungi collection, both have incredible economic potential in locating organisms with novel industrial uses that will lead to novel products. Fungi have provided the world with penicillin, lovastatin, and other globally significant medicines, and they remain an untapped resource with enormous industrial potential. Volume 1 of Industrially Important Fungi for Sustainable Development provides an overview to understanding fungal diversity from diverse habitats and their industrial application for future sustainability. It encompasses current advanced knowledge of fungal communities and their potential biotechnological applications in industry and allied sectors. The book will be useful to scientists, researchers, and students of microbiology, biotechnology, agriculture, molecular biology, and environmental biology.
The Core Model: A Collaborative Paradigm for the Pharmaceutical Industry and Global Health Care develops the innovative core model, an organizational research and design paradigm and economic theory that proposes a collaborative approach to resolving global health issues and improving the productivity of drug development. The model proposes that scientific collaboration does not occur in an unstructured manner, but actually takes place within a highly structured order where knowledge is transferred, integrated and finally translated into commercial products. An understanding of this model will help solve the global pharmaceutical industrys productivity problems and address important global health care and economic issues. This book is useful to researchers, advanced students, regulators, and management in pharmaceutical industries, as well as healthcare professionals, those working in health economics, and those interested in scientific innovation processes.
Healthy environment is important for any kind of biota on earth. It provides the basic elements of life such as clean water, fresh air, fertile soil and supports ecosystem of the food chain. Pollution drastically alters quality of the environment by changing the physico-chemical and biological aspects of these components. Accordingly, toxic metals, combustible and putrescible substances, hazardous wastes, explosives and petroleum products are all examples of inorganic and organic compounds that cause contaminations. Specifically, pollution of toxic and heavy metal in the environment is a growing problem worldwide, currently at an alarming rate. Toxic metals threaten the aquatic ecosystems, agriculture and ultimately human health. Traditional treatment techniques offer certain advantages such as rapid processing, ease of operation and control and flexibility. But, they could not maintain the quality of the environment due to the high operational costs of chemicals used, high energy consumption and handling costs for sludge disposal and overburden of chemical substances which irreversibly affect and destroy biodiversity, which ultimately render the soil useless as a medium for plant growth. Therefore, bioremediation and biotechnology, carried out by living assets to clean up, stabilize and restore contaminated ecosystems, have emerged as promising, environmental friendly and affordable approaches. Furthermore, the use of microbes, algae, transgenic plants and weeds adapted to stressful environments could be employed to enhance accumulation efficiency. Hence, sustainable and inexpensive processes are fast emerging as a viable alternative to conventional remediation methods, and will be most suitable for developing countries. In the current volume, we discuss pollution remediation challenges and how living organisms and the latest biotechnological techniques could be helpful in remediating the pollution in ecofriendly and sustainable ways.
Advances in Phytonanotechnology: From Synthesis to Application guides readers through various applications of nanomaterials on plants by presenting the latest research related to nanotechnology and nanomaterials on plant systems. The book focuses on the effects of these applications on plant morphology, physiology, biochemistry, ecology and genetics. Sections cover the impact on plant yield, techniques, a review of positive and negative impacts, and an overview of current policies regarding the use of nanotechnology on plants. Additionally, the book offers insights into the appropriate application of nanoscience to plants and crops for improved outcome and an exploration of their bioavailability and toxicity in the environment.
Microencapsulations may be found in a number of fields like medicine, drug delivery, biosensing, agriculture, catalysis, intelligent microstructures and in many consumer goods. This new edition of Microencapsulation revises chapters to address the newest innovations in fields and adds three new chapters on the uses of microencapsulations in medicine, agriculture, and consumer products.
The most commonly used biological wastewater treatment technologies still have serious technical-economical and sustainability-related limitations, due to their high energy requirements, poor effluent quality, and lack of energy and resource recovery processes. In this thesis, novel electrochemical membrane bioreactors (EMBRs), which take advantage of membrane separation and bioelectrochemical techniques, are developed for wastewater treatment and the simultaneous recovery of energy and resources. Above all, this innovative system holds great promise for the efficient wastewater treatment and energy recovery. It can potentially recover net energy from wastewater while at the same time harvesting high-quality effluent. The book also provides a proof-of-concept study showing that electrochemical control might offer a promising in-situ means of suppressing membrane fouling. Lastly, by integrating electrodialysis into EMBRs, phosphate separation and recovery are achieved. Hence, these new EMBR techniques provide viable alternatives for sustainable wastewater treatment and resource recovery.
Covering technological aspects as well as the suitability and
applicability of various kinds of uses, this handbook shows
optimization strategies, techniques and assembly pathways to
achieve the combination of complex, even three-dimensional
structures with simple manufacturing steps. The authors provide
information on markets, commercialization opportunities and aspects
of mass or large-scale production as well as design tools,
experimental techniques, novel materials, and ideas for future
improvements. Not only do they weigh up cost versus quantity, they
also consider CMOS and LIGA strategies. |
![]() ![]() You may like...
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,285
Discovery Miles 42 850
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,290
Discovery Miles 32 900
Actinobacteria: Diversity and…
Bhim Pratap Singh, Vijai Kumar Gupta, …
Paperback
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,286
Discovery Miles 32 860
Frontiers in Aquaculture Biotechnology
W. S. Lakra, Mukunda Goswami, …
Paperback
R4,171
Discovery Miles 41 710
|