![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
Biotechnology has prompted a revolution in science and society in the truest sense of the word. For what superficially appears to be a revolution in biotechnology, in effect touches upon the fundamentals of life and the way in which humans relate to it. This book will make a significant contribution to the debate surrounding the effective regulation of biotechnology. The contributing authors assess how regulatory regimes can accommodate the many different and often conflicting issues to which biotechnology is giving rise to (including a very tainted public image). The book's ultimate aim is to explore ways of designing a regulatory regime that takes heed of these different demands whilst, at the same time, answering to the imperatives of effectiveness and efficiency. The book synthesizes three fields of legal analysis; the first focuses on the risk-dominated regulation of GM food and bio-agriculture; the second involves human genetics as a field dominated by considerations of ethics. Finally, patent law has been chosen as an area captured by notions of property. With its holistic approach, The Regulatory Challenge of Biotechnology will be of great interest to academics, policymakers and regulators as well as biotechnology and law students.
This updated edition explores assessing cell viability as a measure for cell fitness under conditions of physiological and patho-physiological stress as well as challenging conditions to cellular and tissue homeostasis, and accounts for the ongoing 2D-to-3D development with topics and assays that target cell viability, mobility, and functionality of tissues and organs, natural or bioartificial, in 3D. The book’s contents span a wide range of viability and functionality assays, from impedance spectroscopy to chemiluminescence, fluorescence and label-free optical detection methodologies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Cell Viability Assays: Methods and Protocols, Second Edition serves as a valuable resource to the growing community in bioinspired life sciences, biomedical sciences, and biotechnology by providing more standardized protocols to probe the “wellbeing†of cells in various environments.
The advances in microsystems offer new opportunities and capabilities to develop systems for biomedical applications, such as diagnostics and therapy. There is a need for a comprehensive treatment of microsystems and in particular for an understanding of performance limits associated with the shrinking scale of microsystems. The new edition of Microsystems for Bioelectronics addresses those needs and represents a major revision, expansion and advancement of the previous edition. This book considers physical principles and trends in extremely scaled autonomous microsystems such as integrated intelligent sensor systems, with a focus on energy minimization. It explores the implications of energy minimization on device and system architecture. It further details behavior of electronic components and its implications on system-level scaling and performance limits. In particular, fundamental scaling limits for energy sourcing, sensing, memory, computation and communication subsystems are developed and new applications such as optical, magnetic and mechanical sensors are presented. The new edition of this well-proven book with its unique focus and interdisciplinary approach shows the complexities of the next generation of nanoelectronic microsystems in a simple and illuminating view, and is aimed for a broad audience within the engineering and biomedical community.
This volume discusses the role of ZIF-8 composites in water decontamination as an adsorbent and photocatalyst. Metal-organic frameworks (MOFs) are advanced porous materials and are promising adsorbents with facile modifications, high specific surface area, controllable porosity, and tailored surface properties. Water pollution is a major concern and has endangered human health. Recently, researchers have designed MOFs for use in remediation.
Tissue engineering involves seeding of cells on bio-mimicked scaffolds providing adhesive surfaces. Researchers though face a range of problems in generating tissue which can be circumvented by employing nanotechnology. It provides substrates for cell adhesion and proliferation and agents for cell growth and can be used to create nanostructures and nanoparticles to aid the engineering of different types of tissue. Written by renowned scientists from academia and industry, this book covers the recent developments, trends and innovations in the application of nanotechnologies in tissue engineering and regenerative medicine. It provides information on methodologies for designing and using biomaterials to regenerate tissue, on novel nano-textured surface features of materials (nano-structured polymers and metals e.g.) as well as on theranostics, immunology and nano-toxicology aspects. In the book also explained are fabrication techniques for production of scaffolds to a series of tissue-specific applications of scaffolds in tissue engineering for specific biomaterials and several types of tissue (such as skin bone, cartilage, vascular, cardiac, bladder and brain tissue). Furthermore, developments in nano drug delivery, gene therapy and cancer nanotechonology are described. The book helps readers to gain a working knowledge about the nanotechnology aspects of tissue engineering and will be of great use to those involved in building specific tissue substitutes in reaching their objective in a more efficient way. It is aimed for R&D and academic scientists, lab engineers, lecturers and PhD students engaged in the fields of tissue engineering or more generally regenerative medicine, nanomedicine, medical devices, nanofabrication, biofabrication, nano- and biomaterials and biomedical engineering.
Chitosan in Biomedical Applications provides a thorough insight into the complete chitosan chemistry, collection, chemical modifications, characterization and applications of chitosan in biomedical applications and healthcare fields. Chitosan, a biopolymer of natural origin, has been explored for its variety of applications in biomedical research, medical diagnostic aids and material science. It is the second most abundant natural biopolymer after cellulose, and considered as an excellent excipient because of its non-toxic, stable, biodegradable properties. Several research innovations have been made on applications of chitosan in biomedical applications. The book explores key topics, such as molecular weight, degree of deacetylation, and molecular geometry, along with an emphasis on recent advances in the field written by academic, industry, and clinical researchers. Chitosan in Biomedical Applications will be of interest to those in biomedical fields including the biomaterials and tissue engineering community investigating and developing biomaterials for biomedical applications, particularly graduate students, young faculty and others exploring chitosan-based materials.
This document is exclusively dedicated to DNA. It explains the secrets of DNA from all corners. Presented in a simple, lucid manner; it will useful to all involved in bioscience. In all it consists 12 chapters, figures, photos and a wholesome glossary of the terms related to DNA.
This volume discusses the role of MOFs in removal of pharmaceutical pollutants. Metal-organic frameworks (MOFs) are advanced porous materials and are promising adsorbents with facile modifications, high specific surface area, controllable porosity, and tailored surface properties. Pharmaceutical pollution is an issue of concern due to its effects on environment. Recently, researchers have designed MOFs for use in remediation.
Nanoparticle therapeutics: Production Technologies, Types of Nanoparticles, and Regulatory Aspects employs unique principles for applications in cell-based therapeutics, diagnostics and mechanistics for the study of organ physiology, disease etiology and drug screening of advanced nanoparticles and nanomaterials. The book focuses on the extrapolation of bioengineering tools in the domain of nanotechnology and nanoparticles therapeutics, fabrication, characterization and drug delivery aspects. It acquaints scientists and researchers on the experiential and experimental aspects of nanoparticles and nanotechnology to equip their rational application in various fields, especially in differential diagnoses and in the treatment of diverse diseased states. This complete resource provides a holistic understanding of the principle behind formation, characterization, applications, regulations and toxicity of nanoparticles employing myriad principles of nanotechnology. Investigators, pharmaceutical researchers, and advanced students working on technology advancement in the areas of designing targeted therapies, nanoscale imaging systems and diagnostic modalities in human diseases where nanoparticles can be used as a critical tool for technology advancement in drug delivery systems will find this book useful.
Microbial Biotechnology is wide-ranging, multi-disciplinary activities which include recombinant DNA techniques, cloning and the application of microbes to the production of goods from bread to antibiotics. This book is an attempt to highlight the significant aspects of the vast subject area of microbial biotechnology likes bioinformatics tool for PCR primer designing, fungal biotransformations, bioremediation by microbes, natural products from fungi, microbial diversity etc to provide a complete overview of the subject. It also addresses the role of bacterial plasmid in xenobiotic degradation, antimicrobial resistance in bacteria, ultraviolet-B radiation effect on microbes and human health. The book will be valuable to the researchers, biologist, microbiologist, scientists, post graduate students of microbiology, agriculture, biotechnology and medical science also.
Chitosan in Drug Delivery provides thorough insights into chitosan chemistry, collection, chemical modifications, characterization and applications in the pharmaceutical industry and healthcare fields. The book explores molecular weight, degree of deacetylation and molecular geometry, emphasizing recent advances in the field as written by academic, industry and regulatory scientists. It will be a useful resource for pharmaceutical scientists, including industrial pharmacists, analytical scientists, postgraduate students, health care professionals and regulatory scientists actively involved in pharmaceutical product and process development in natural polymers containing drug delivery.
"Biotechnology and Biology of Trichoderma" serves as a
comprehensive reference on the chemistry and biochemistry of one of
the most important microbial agents, Trichoderma, and its use in an
increased number of industrial bioprocesses for the synthesis of
many biochemicals such as pharmaceuticals and biofuels. This book
provides individuals working in the field of Trichoderma,
especially biochemical engineers, biochemists and biotechnologists,
important information on how these valuable fungi can contribute to
the production of a wide range of products of commercial and
ecological interest.
Herbal Biomolecules in Healthcare Applications presents extensive detailed information on all the vital principles, basics and fundamental aspects of multiple herbal biomolecules in the healthcare industry. This book examines important herbal biomolecules including alkaloids, glycosides, flavonoids, anthraquinones, steroids, polysaccharides, tannins and polyphenolic compounds, terpenes, fats and waxes, proteins and peptides, and vitamins. These herbal biomacromolecules are responsible for different bioactivities as well as pharmacological potentials. A systematic understanding of the extraction, purification, characterization, applications of these herbal biomolecules and their derivatives in healthcare fields is developed in this comprehensive book. Chapters explore the key topics along with an emphasis on recent research and developments in healthcare fields by leading experts. They include updated literature review of the relevant key topics, good quality illustrations, chemical structures, flow charts, well-organized tables and case studies. Herbal Biomolecules in Healthcare Applications will be useful for researchers working on natural products and biomolecules with bioactivity and nutraceutical properties. Professionals specializing in scientific areas such as biochemistry, pharmacology, analytical chemistry, organic chemistry, clinics, or engineering focused on bioactive natural products will find this book useful.
Simulating for a crisis is far more than creating a simulation of a crisis situation. In order for a simulation to be useful during a crisis, it should be created within the space of a few days to allow decision makers to use it as quickly as possible. Furthermore, during a crisis the aim is not to optimize just one factor, but to balance various, interdependent aspects of life. In the COVID-19 crisis, decisions had to be made concerning e.g. whether to close schools and restaurants, and the (economic) consequences of a 3 or 4-week lock-down had to be considered. As such, rather than one simulation focusing on a very limited aspect, a framework allowing the simulation of several different scenarios focusing on different aspects of the crisis was required. Moreover, the results of the simulations needed to be easily understandable and explainable: if a simulation indicates that closing schools has no effect, this can only be used if the decision makers can explain why this is the case. This book describes how a simulation framework was created for the COVID-19 crisis, and demonstrates how it was used to simulate a wide range of scenarios that were relevant for decision makers at the time. It also discusses the usefulness of the approach, and explains the decisions that had to be made along the way as well as the trade-offs. Lastly, the book examines the lessons learned and the directions for the further development of social simulation frameworks to make them better suited to crisis situations, and to foster a more resilient society.
Microorganisms are ubiquitous and indispensable for the existence of mankind. They show diversity in size, shape, metabolism and the range of positive functions they perform for sustaining the life on this planet. Bacteria have been exploited by the mankind since times immemorial for the production of various foods and enzymes. They reveal several types of metabolic reactions which are absent in eukaryotic organisms. The present book highlights the potential of microorganisms in solving the global energy crisis. Presently, the world is facing energy crisis due to depleting fossil fuels which are expected to get exhausted during the next 50 yeaOne of the alternative energy resources for the new millennium is expected to be the renewable energy including biomass from which a variety of biofuels can be obtained by the exploitation of microbes. This volume has been organized in 13 s which have been prepared to provide the readers with both an in-depth study and a broad perspective of microorganisms for sustainability of mankind. Further, it makes the readers familiar with the diversity in energy generating pathways among different groups of microorganisms and different types of biomass energy resources available on this planet and the various possibilities which can be exploited for converting these in to alternate energy sources with the help of microbes. A great effort has been made to provide the readers a comprehensive knowledge about different alternative fuels and value added products from microbes for the 21st century. It is hoped that this volume will prove useful to the students and professionals who are pursuing their career in Microbiology, Biotechnology, Biochemistry, Environmental sciences and Energy studies related to the alternate biofuels to solve the global energy crisis.
Despite the recent advances made in the improvement of crucifer crops using conventional breeding techniques, the yield levels and the oil and meal quality could not be improved as expected. The understanding of genetic material (DNA/RNA) and its manipulation by scientists has provided the opportunity to improve crucifers by increasing its diversity beyond conventional genetic limitations. The application of the biotechnological techniques will have major impacts in two ways: first, it provides a number of techniques/methods for efficient selection for favorable variants and second, it gives an opportunity to utilize alien variation available in the crucifers by using the novel techniques of biotechnology to develop high yielding varieties with good nutritional quality, having resistance to insect, pest, and disease resistance. |
![]() ![]() You may like...
Vision, Sensing and Analytics…
MD Atiqur Rahman Ahad, Atsushi Inoue
Hardcover
R5,153
Discovery Miles 51 530
Reinforcement Learning Algorithms…
Boris Belousov, Hany Abdulsamad, …
Hardcover
R4,236
Discovery Miles 42 360
Handbook of AI-based Metaheuristics
Anand J. Kulkarni, Patrick Siarry
Hardcover
R6,307
Discovery Miles 63 070
Soft Computing Techniques in Engineering…
Srikanta Patnaik, Baojiang Zhong
Hardcover
Hybrid Metaheuristics - Powerful Tools…
Christian Blum, Gunther R. Raidl
Hardcover
R4,158
Discovery Miles 41 580
Metaheuristic Optimization Algorithms in…
Ali Kaveh, Armin Dadras Eslamlou
Hardcover
R2,932
Discovery Miles 29 320
Blockchain Technology for Global Social…
Jane Thomason, Sonja Bernhardt, …
Hardcover
R5,275
Discovery Miles 52 750
|