![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
Evidence-Based Validation of Herbal Medicines brings together current thinking and practice in the areas of characterization and validation of natural products. This book reviews all aspects of evaluation and development of medicines from plant sources, including their cultivation, collection, phytochemical and phyto-pharmacological evaluation, and therapeutic potential. Emphasis is placed on describing the full range of evidence-based analytical and bio-analytical techniques used to characterize natural products, including -omic technologies, phyto-chemical analysis, hyphenated techniques, and many more.
Therapeutic risk management of medicines is an authoritative and practical guide on developing, implementing and evaluating risk management plans for medicines globally. It explains how to assess risks and benefit-risk balance, design and roll out risk minimisation and pharmacovigilance activities, and interact effectively with key stakeholders. A more systematic approach for managing the risks of medicines arose following a number of high-profile drug safety incidents and a need for better access to effective but potentially risky treatments. Regulatory requirements have evolved rapidly over the past decade. Risk management plans (RMPs) are mandatory for new medicinal products in the EU and a Risk Evaluation and Mitigation Strategy (REMS) is needed for certain drugs in the US. This book is an easy-to-read resource that complements current
regulatory guidance, by exploring key areas and practical
implications in greater detail. It is structured into chapters
encompassing a background to therapeutic risk management,
strategies for developing RMPs, implementation of RMPs, and the
continuing evolution of the risk management field.The topic is of
critical importance not only to the pharmaceutical and
biotechnology industries, but also regulators and healthcare
policymakers.Some chapters feature contributions from selected
industry experts.
Cancer can affect people of all ages, and approximately one in
three people are estimated to be diagnosed with cancer during their
lifetime. Extensive research is being undertaken by many different
institutions to explore potential new therapeutics, and
biomaterials technology is now being developed to target, treat and
prevent cancer. This unique book discusses the role and potential
of biomaterials in treating this prevalent disease.
With decreasing profit margins, increasing cost pressures, growing
regulatory compliance concerns, mounting pressure from generic
drugs and increasing anxiety about the future of healthcare
reimbursement, pharmaceutical manufacturers are now forced to
re-examine and re-assess the way they have been doing things. In
order to sustain profitability, these companies are looking to
reduce waste (of all kinds), improve efficiency and increase
productivity. Many of them are taking a closer look at lean
manufacturing as a way to achieve these goals. Lean
biomanufacturing re-visits lean principles and then applies them
sympathetically - in a highly practical approach - to the specific
needs of pharmaceutical processes, which present significantly
different challenges to more mainstream manufacturing processes. A
major goal of the book is to highlight those problems and issues
that appear more specific or unique to biopharmaceutical
manufacturing situations and to provide some insights into what
challenges are the important ones to solve and what techniques,
tools and mechanisms to employ to be successful.
Carbon is light-weight, strong, conductive and able to mimic
natural materials within the body, making it ideal for many uses
within biomedicine. Consequently a great deal of research and
funding is being put into this interesting material with a view to
increasing the variety of medical applications for which it is
suitable. Diamond-based materials for biomedical applications
presents readers with the fundamental principles and novel
applications of this versatile material.
Protein folding is a process by which a protein structure assumes
its functional shape of conformation, and has been the subject of
research since the publication of the first software tool for
protein structure prediction. Protein folding in silico approaches
this issue by introducing an ab initio model that attempts to
simulate as far as possible the folding process as it takes place
in vivo, and attempts to construct a mechanistic model on the basis
of the predictions made. The opening chapters discuss the early
stage intermediate and late stage intermediate models, followed by
a discussion of structural information that affects the
interpretation of the folding process. The second half of the book
covers a variety of topics including ligand binding site
recognition, the "fuzzy oil drop" model and its use in simulation
of the polypeptide chain, and misfolded proteins. The book ends
with an overview of a number of other ab initio methods for protein
structure predictions and some concluding remarks.
Developments in tissue engineered and regenerative medicine
products summarizes recent developments in tissue engineering and
regenerative medicine with an emphasis on commercialization and
product development. Features of current cell therapy and tissue
engineered products which have facilitated successful
commercialization are emphasized and roadblocks to successful
product development are also highlighted. Preclinical and clinical
testing of tissue engineered and regenerative medicine products,
regulatory, quality control, manufacturing issues, as well as
generating and securing intellectual property and freedom to
operate considerations are presented. This book represents a
complete 'how-to' manual for the development of tissue engineered
and regenerative medicine products from conceptualization to
clinical trial to manufacturing.
People working in development of drugs, pesticides, washing
detergents, etc., are obliged by law to conduct analyses of the
"metabolic pathways" or "maps" for the chemical compounds that they
are using or proposing.
DNA sequence specificity is a sub-specialty in the general area of
molecular recognition. This area includes macromolecular-molecular
interactions (e.g., protein-DNA), oligomer-DNA interacitons (e.g.,
triple strands), and ligand-DNA interactions (e.g., drug-DNA). It
is this latter group of DNA sequence specificity interactions that
is the subject of Volumes 1 and 2 of "Advances in DNA Sequence
Specific Agents." As was the case for Volume 1, Part A also covers
methodology, but in Volume 2 we include calorimetric titrations,
molecular modeling, X-ray crystallographic and NMR structural
studies, and transcriptional assays. Part B also follows the same
format as Volume 1 and describes the sequence specificities and
covalent and noncovalent interactions of small ligands with
DNA.
Gene probes, whether RNA or DNA, have played a central role in the rapid development of molecular biology. The wide variety of applications is matched by a considerable diversity in the methods used for generating probes, a complete account of which would be very difficult to make. Instead, this second volume in the series combines a selection of newer gene probe procedures with a review of the most important established methods, together with some examples of the ways in which gene probes can be applied. In doing so, the book aims to act not only as an introductory manual for newcomers to the field, but also as a means of broadening the horizons of existing researchers.
In recent decades there has been an explosion in work in the social and physical sciences describing the similarities between human and nonhuman as well as human and non-animal thinking. This work has explicitly decentered the brain as the sole, self-contained space of thought, and it has found thinking to be an activity that operates not only across bodies but also across bodily or cellular membranes, as well as multifaceted organic and inorganic environments. For example, researchers have looked at the replication and spread of slime molds (playfully asking what would happen if they colonized the earth) to suggest that they exhibit 'smart behavior' in the way they move as a potential way of considering the spread of disease across the globe. Other scholars have applied this model of non-human thought to the reach of data mining and global surveillance. In The Biopolitics of Alphabets and Embryos, Ruth Miller argues that these types of phenomena are also useful models for thinking about the growth, reproduction, and spread of political thought and democratic processes. Giving slime, data and unbounded entities their political dues, Miller stresses their thinking power and political significance and thus challenges the anthropocentrism of mainstream democratic theories. Miller emphasizes the non-human as highly organized, systemic and productive of democratic growth and replication. She examines developments such as global surveillance, embryonic stem cell research, and cloning, which have been characterized as threats to the privacy, dignity, and integrity of the rational, maximizing and freedom-loving democratic citizen. By shifting her level of analysis from the politics of self-determining subjects to the realm of material environments and information systems, Miller asks what might happen if these alternative, nonhuman thought processes become the normative thought processes of democratic engagement.
The book "Green Technologies for the Environment" brings together experts in the field of biotechnology, chemistry, chemical engineering, environmental engineering and toxicology from both academia and industry, to discuss green processes for the environment. The topics included finding replacements for crude oil to meet both our energy needs as well as the supply of chemicals for the production of essential products, advances in chemical processing, waste valorization, alternative solvents, and developments in homogeneous and heterogeneous catalysis as well as enzyme-based processes for chemical transformations. Advances in green chemistry concepts will further enhance the field through the design of new chemicals and solvents. In addition, obtaining a better understanding of the mechanistic pathways involved in various reactions is essential toward advances in the field. The goal of the work described in each of the chapters is to address the need for best practices for chemical processes and for the production of chemicals, while promoting sustainability.
Chiral molecules are ubiquitous in nature. Thus, it is not surprising to come across this phenomenon in the world of flavor substances. This book provides an overview on the analytical procedures currently applied to analyze chiral flavor substances at trace levels. It demonstrates several examples for the application of these techniques to determine naturally occurring enantiomeric compositions of chiral key flavor compounds in various natural systems. In addition to the analytical aspects, the contributions focus on the sensory properties of enantiomers and enlarge our knowledge on the correlation between configurations and odor properties and intensities of chiral flavor compounds. The practical importance of the topic is reflected by a discussion of merits and limitations of chiral analysis for the authenticity control of food flavorings. In addition, examples for the use of enzymes and microorganisms to obtain enantiopure flavor substances and thus to meet legal requirements for "natural" labeling are presented. Finally, the book covers aspects recently getting more and more in the focus of flavor science: What are the physiological mechanisms underlying the perception of sensory properties and does chirality matter in that respect?
Smart Polymeric Nano-Constructs in Drug Delivery: Concept, Design and Therapeutic Applications provides a thorough discussion of the most state of the art material and polymer exploitations for the delivery of bioactive(s) as well as their current and clinical status. The book enables researchers to prepare a variety of smart drug delivery systems to investigate their properties as well as to discover their uses and applications. The novelty of this approach addresses an existing need of exhaustively understanding the potential of the materials including polymeric drug delivery systems that are smartly designed to deliver bioactive(s) into the body at targeted sites without showing side effects. The book is helpful for those in the health sector, specifically those developing nanomedicine using smart material-based nano-delivery systems. Polymers have unique co-operative properties that are not found with low-molecular-weight compounds along with their appealing physical and chemical properties, constituting the root of their success in drug delivery. Smart Polymeric Nano-Constructs in Drug Delivery: Concept, Design and Therapeutic Applications discusses smart and stimuli responsive polymers applicable in drug delivery, followed detailed information about various concepts and designing of polymeric novel drug delivery systems for treatment of various type of diseases, also discussing patents related to the field. The book helps readers to design and develop novel drug delivery systems based on smart materials for the effective delivery of bioactive that take advantage of recent advances in smart polymer-based strategies. It is useful to those in pharmaceutical sciences and related fields in developing new drug delivery systems.
Bioengineered Nanomaterials for Wound Healing and Infection Control is a key reference for those working in the fields of materials science, pharmacy, nanotechnology, biomedical engineering and microbiology. Bioengineered nanomaterials have unique physicochemical properties which promote accelerated wound healing and treatment of infections. The biosynthesis of these nanomaterials also offers a clean, safe and renewable alternative to traditional nanomaterials, helping reduce environmental impact alongside antibacterial resistance.
Valorization of Wastes for Sustainable Development: Waste to Wealth highlights the various valorization of organic and non-organic waste to offer a way forward to a sustainable world. Categorizing the various types of waste valorization for renewable fuel production and other valorizations utilizing organic and non-organic waste, this book offers the reader a comprehensive view of various waste valorizations together with their potential applications. Split into four sections, the book's chapters cover the general scenarios and challenges of current waste management and the valorization of waste specifically for renewable fuels as the alternative energy source to depleting fossil fuels. Other chapters cover waste valorizations categorized into organic and non-organic waste for various applications and the future prospect of waste valorizations with possible plans and strategies for effective global waste management.
Algae Based Bioelectrochemical Systems for Carbon Sequestration, Carbon Storage, Bioremediation and Bioproduct Generation explores the integration of carbon capture, storage and sequestration technologies with bioelectrochemical fuels cells (BEFC), showing how conventional technologies can be renovated to aid in the reduction in GHG emissions and simultaneously optimize BEFC performance. The book focuses on the integration of algal biogas upgradation with electrochemical systems, providing a guide to the renovation of conventional technologies to combine energy production and carbon sequestration. Chapters discuss the latest advancements in carbon sequestration biocatalyst and microbial platforms and integrations for rapid carbon biotransformations. In addition, the book highlights the potential of algae and chemolithotrophs as candidates for carbon delivery, biocatalyst orientation and architecture for optimal BEFC performance.
Quantitative Perfusion MRI: Techniques, Applications, and Practical Considerations, Volume 11 clearly and carefully explains the basic theory and MRI techniques for quantifying perfusion non-invasively in deep tissue, covering all aspects of perfusion imaging, from acquisition requirements to selection of contrast agents and appropriate pharmacokinetic models and for reliable quantification in different diseases and tissue types. Specifically, this book enables the reader to understand what microvascular functional parameters can be measured with perfusion MRI, learn the basic techniques to measure perfusion in different organs, apply the appropriate perfusion MRI technique to the organ of interest, and much more. This complete reference on quantitative perfusion MRI is highly suitable for both early and experienced researchers, graduate students and clinicians wishing to understand how quantitative perfusion MRI can apply to their application area of interest. |
You may like...
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R3,974
Discovery Miles 39 740
Cyanobacterial Lifestyle and its…
Prashant Kumar Singh, Maria F. Fillat, …
Paperback
R3,925
Discovery Miles 39 250
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,033
Discovery Miles 40 330
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,463
Discovery Miles 34 630
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,097
Discovery Miles 30 970
Statistical, Mapping and Digital…
Gilles Maignant, Pascal Staccini
Hardcover
R2,198
Discovery Miles 21 980
Molecular Medical Microbiology
Yi-Wei Tang, Musa Hindiyeh, …
Mixed media product
R14,897
Discovery Miles 148 970
|