![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > General
A recent major development in high technology, and one which bears considerable industrial potential, is the advent of low-dimensional semiconductor quantum structures. The research and development activity in this field is moving fast and it is thus important to afford scientists and engineers the opportunity to get updated by the best experts in the field. The present book draws together the latest developments in the fabrication technology of quantum structures, as well as a competent and extensive review of their fundamental properties and some remarkable applications. The book is based on a set of lectures that introduce different aspects of the basic knowledge available, it has a tutorial content and could be used as a textbook. Each aspect is reviewed, from elementary concepts up to the latest developments. Audience: Undergraduates and graduates in electrical engineering and physics schools. Also for active scientists and engineers, updating their knowledge and understanding of the frontiers of the technology.
Fabrication technologies for nanostructured devices have been
developed recently, and the electrical and optical properties of
such nanostructures are a subject of advanced research.
Nonlinear optics is a topic of much current interest that exhibits a great diversity. Some publications on the subject are clearly physics, while others reveal an engineering bias; some appear to be accessible to the chemist, while others may appeal to biological understanding. Yet all purport to be non linear optics so where is the underlying unity? The answer is that the unity lies in the phenomena and the devices that exploit them, while the diversity lies in the materials used to express the phenomena. This book is an attempt to show this unity in diversity by bringing together contributions covering an unusually wide range of materials, preceded by accounts of the main phenomena and important devices. Because ofthe diversity, individual materials are treated in separate chapters by different expert authors, while as editors we have shouldered the task of providing the unifying initial chapters. Most main classes of nonlinear optical solids are treated: semiconductors, glasses, ferroelectrics, molecular crystals, polymers, and Langmuir-Blodgett films. (However, liquid crystals are not covered. ) Each class of material is enough for a monograph in itself, and this book is designed to be an introduction suitable for graduate students and those in industry entering the area of nonlinear optics. It is also suitable in parts for final-year undergraduates on project work. It aims to provide a bridge between traditional fields of expertise and the broader field of nonlinear optics."
Computer-aided-design (CAD) of semiconductor microtransducers is relatively new in contrast to their counterparts in the integrated circuit world. Integrated silicon microtransducers are realized using microfabrication techniques similar to those for standard integrated circuits (ICs). Unlike IC devices, however, microtransducers must interact with their environment, so their numerical simulation is considerably more complex. While the design of ICs aims at suppressing "parasitic effects, microtransducers thrive on optimizing the one or the other such effect. The challenging quest for physical models and simulation tools enabling microtransducer CAD is the topic of this book. It is intended as a text for graduate students in Electrical Engineering and Physics and as a reference for CAD engineers in the microsystems industry. This text evolved from a series of courses offered to graduate students from Electrical Engineering and Physics. Much of the material in the book can be presented in about 40 hours of lecture time. The book starts with an illustrative example which highlights the goals and benefits of microtransducer CAD. This follows with a summary of model equations describing electrical transport in semiconductor devices and microtransducers in the absence of external fields. Models treating the effects of the external radiant, magnetic, thermal, and mechanical fields on electrical transport are then systematically introduced. To enable a smooth transition into modeling of mechanical systems, an abridged version of solid structural and fluid mechanics is presented, whereby the focus is on pertinent model equations and boundary conditions. This follows with model equations and boundary conditions relevant to various types of mechanical microactuators including electrostatic, thermal, magnetic, piezoelectric, and electroacoustic. The book concludes with a glimpse into SPICE simulation of the mixed-signal microsystem, i.e., microtransducer plus circuitry. Where possible, the model equations are supplemented with tables and/or graphs of process-dependent material data to enable the CAD engineer to carry out simulations even when reliable material models are not available. IVZ LANG: Introduction: Modeling and Simulation of Microtransducers; Illustrative Example; Progress in Microtransducer Modeling; References.- Basic Electronic Transport: Poisson s Equation; Continuity Equations; Carrier Transport in Crystalline Materials and Isothermal Behavior; Electrical Conductivity and Isothermal Behavior in Polycrystalline Materials; Electrical Conductivity and Isothermal Behavior in Metals; Boundary and Interface Conditions; The External Fields What Do They Influence?; References.- Radiation Effects on Carrier Transport: Reflection and Transmission of Optical Signals; Modeling Optical Absorption in Intrinsic Semiconductors; Absorption in Heavily-Doped Semiconductors; Optical Generation Rate and Quantum Efficiency; Low Energy Interactions with Insulators and Metals; High Energy Interactions and Monte Carlo Simulations; Model Equations for Radiant Sensor Simulation; Illustrative Simulation Example Color Sensor; References.- Magnetic-Field Effects on Carrier Transport: Galvanomagnetic Transport Equation; Galvanomagnetic Transport Coefficients; Equations and Boundary Conditions for Magnetic Sensor Simulation; Illustrative Simulation Example Micromachined Magnetic Vector Probe; References.- Thermal Non-Uniformity Effects on Carrier Transport: Non-Isothermal Effects; Electrothermal Transport Model; Electrical and Thermal Transport Coefficients; Electro-Thermo-Magnetic Interactions; Heat Transfer in Thermal Microstructures; Summary of Equations and Computational Procedure; Illustrative Simulation Example Micro Pirani Gauge; References.- Mechanical Effects on Carrier Transport: Piezoresistive Effect; Strain and Electron Transport; Strain and Hole Transport; Piezojunction Effect; Effects of Stress Gradients; Galvano-Piezo-Magnetic Effects; The Piezo Drift-Diffusion Transport Model; Illustrative Simulation Example Stress Effects on Hall Sensors; References.- Mechanical and Fluidic Signals: Definitions; Model Equations for Mechanical Analysis; Model Equations for Analysis of Fluid Transport; Illustrative Simulation Example Analysis of Flow Channels; References.- Micro-Actuation: Transduction Principles; State-of-the-Art and Preview; Electrostatic Actuation; Thermal Actuation; Magnetic Actuation; Piezoelectric Actuation; Electroacoustic Transducers; Computational Procedure and Coupling; Illustrative Example CMOS Micromirror.- Microsystem Simulation: Electrical Analogues for Mixed-Signals and Historical Developments; Circuit Modeling and Implementation Considerations; Lumped Analysis: Illustrative Example Electrostatic Micromirror; Distributed Analysis: Illustrative Example Flow Microsensor; References.- Subject Index."
This book is the result of a long friendship, of a broad international co operation, and of a bold dream. It is the summary of work carried out by the authors, and several other wonderful people, during more than 15 years, across 3 continents, in the course of countless meetings, workshops and discus sions. It shows that neither language nor distance can be an obstacle to close scientific cooperation, when there is unity of goals and true collaboration. When we started, we had very different approaches to handling the mys terious, almost magical world of asynchronous circuits. Some were more theo retical, some were closer to physical reality, some were driven mostly by design needs. In the end, we all shared the same belief that true Electronic Design Automation research must be solidly grounded in formal models, practically minded to avoid excessive complexity, and tested "in the field" in the form of experimental tools. The results are this book, and the CAD tool petrify. The latter can be downloaded and tried by anybody bold (or desperate) enough to tread into the clockless (but not lawless) domain of small-scale asynchronicity. The URL is http: //www.lsi. upc. esr j ordic/petrify. We believe that asynchronous circuits are a wonderful object, that aban dons some of the almost militaristic law and order that governs synchronous circuits, to improve in terms of simplicity, energy efficiency and performance."
Femtosecond lasers opened up new avenue in materials processing due to its unique features of ultrashort pulse width and extremely high peak intensity. One of the most important features of femtosecond laser processing is that strong absorption can be induced even by materials which are transparent to the femtosecond laser beam due to nonlinear multiphoton absorption. The multiphoton absorption allows us to perform not only surface but also three-dimensionally internal microfabrication of transparent materials such as glass. This capability makes it possible to directly fabricate three-dimensional microfluidics, micromechanics, microelectronics and microoptics embedded in the glass. Further, these microcomponents can be easily integrated in a single glass microchip by the simple procedure using the femtosecond laser. Thus, the femtosecond laser processing provides some advantages over conventional methods such as traditional semiconductor processing or soft lithography for fabrication of microfluidic, optofludic and lab-on-a-chip devices and thereby many researches on this topic are currently being carried out. This book presents a comprehensive review on the state of the art and future prospects of femtosecond laser processing for fabrication of microfluidics and optofludics including principle of femtosecond laser processing, detailed fabrication procedures of each microcomponent and practical applications to biochemical analysis.
This second edition of a well-received volume has been thoroughly updated and expanded to cover the most recent developments. Coverage now includes additional polymers such as polyindole and polyazines, composites of polymers with carbon nanotubes, metals, and metal oxides, as well as bending-beam techniques for characterization. Again, the author provides a systematic survey of the knowledge accumulated in this field in the last thirty years. This includes thermodynamic aspects, the theory of the mechanism of charge transport processes, the chemical and physical properties of these compounds, the techniques of characterization, the chemical and electrochemical methods of synthesis as well as the application of these systems. The book contains a compilation of the polymers prepared so far and covers the relevant literature with almost 2000 references. From reviews of the previous edition 'a comprehensive reference guide for those interested in this field' (Journal of Solid State Electrochemistry)
This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) - for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a "how-to" guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to develop materials which can absorb the energy from sunlight to drive electrochemical hydrogen production from the splitting of water. The substantial complexity in the scientific understanding and experimental protocols needed to sufficiently pursue accurate and reliable materials development means that a large need exists to consolidate and standardize the most common methods utilized by researchers in this field.
For 50 years conventional electronics has ignored the electron spin. The manipulation and utilisation of the electron spin heralds an exciting and rapidly changing era in electronics, combining the disciplines of magnetism and traditional electronics. The first generation of "spintronic" devices (such as read heads based on giant magnetoresistance or non-volatile magnetic random access memories) have already gained dominant positions in the market place. This volume, the first of its kind on spin electronics describes all the essential topics for new researchers entering the field. It covers magnetism and semiconductor basics, micromagnetism, experimental techniques, materials science, device fabrication and new developments in spin-dependent processes. At the end of most chapters are a number of exercises and worked problems to aid the reader in understanding this fascinating new field.
Molecular Beam Epitaxy describes a technique in wide-spread use for the production of high-quality semiconductor devices. It discusses the most important aspects of the MBE apparatus, the physics and chemistry of the crystallization of various materials and device structures, and the characterization methods that relate the structural parameters of the grown (or growing) film or structure to the technologically relevant procedure. In this second edition two new fields have been added: crystallization of as-grown low-dimensional heterostructures, mainly quantum wires and quantum dots, and in-growth control of the MBE crystallization process of strained-layer structures. Out-of-date material has been removed.
This book is an outgrowth of a course given by the author for people in industry, government, and universities wishing to understand the implica tions of emerging optical fiber technology, and how this technology can be applied to their specific information transport and sensing system needs. The course, in turn, is an outgrowth of 15 exciting years during which the author participated in the research and development, as well as in the application, of fiber technology. The aim of this book is to provide the reader with a working knowledge of the components and subsystems which make up fiber systems and of a wide variety of implemented and proposed applications for fiber technology. The book is directed primarily at those who would be users, as opposed to developers, of the technology. The first half of this book is an overview of components and subsys tems including fibers, connectors, cables, sources, detectors, receivers, transmitters, and miscellaneous components. The goal is to familiarize the reader with the properties of these components and subsystems to the extent necessary to understand their potential applications and limitations.
The book describes the design of micro systems systematically as well as the equations needed for an estimation of the basic elements. It can be used without knowing fabrication processes of micro systems and provides the basic equations needed to calculate the effects and forces which are important in micro systems. For quick reference equations are presented in tables which are found in an index at the end of this book.
Knowledge of the refractive indices and absorption coefficients of semiconductors is especially import in the design and analysis of optical and optoelectronic devices. The determination of the optical constants of semiconductors at energies beyond the fundamental absorption edge is also known to be a powerful way of studying the electronic energy-band structures of the semiconductors. The purpose of this book is to give tabulated values and graphical information on the optical constants of the most popular semiconductors over the entire spectral range. This book presents data on the optical constants of crystalline and amorphous semiconductors. A complete set of the optical constants are presented in this book. They are: the complex dielectric constant (E=e.+ieJ, complex refractive index (n*=n+ik), absorption coefficient (a.), and normal-incidence reflectivity (R). The semiconductor materials considered in this book are the group-IV elemental and binary, llI-V, IT-VI, IV-VI binary semiconductors, and their alloys. The reader will fmd the companion book "Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles" useful since it emphasizes the basic material properties and fundamental prinCiples.
In the series of International Winter Schools on New Developments in Solid State Physics, the fourth one was devoted to the subject: "Two- Dimensional Systems: Physics and Devices". For the second time the pro- ceedings of one of these Winter Schools appear as a volume in the Springer Series in Solid-State Sciences (the earlier proceedings were published as Vol. 53). The school was held in the castle of MauterndorfjSalzburg (Austria) February 24-28, 1986. These proceedings contain contributions ba:sed on the thirty invited lectures. The school was attended by 179 registered participants (40% students), who came from western European countries, the United States of America, Japan, the People's Republic of China and Poland. As far as the subjects are conterned, several papers deal with the growth and characterization of heterostructures. Dynamical RHEED tech- niques are described as a tool for in situ studies of MBE growth mech- anisms. Various growth techniques, including MBE, MOMBE, MOCVD and modifications of these, are discussed. The limiting fa.ctors for the carrier mobilities and the inftuence of the spacer thickness in single het- erostructures of GaAs/GaAIAs seem to be understood and are no longer a matter of controversy. In addition, the growth of two fascinating systems, Si/SiGe and Hg _ Cd Te/CdTe, is discussed in detail.
Printed Organic And Molecular Electronics was compiled to create a reference that included existing knowledge from the most renowned industry, academic, and government experts in the fields of organic semiconductor technology, graphic arts printing, micro-contact printing, and molecular electronics. It is divided into sections that consist of the most critical topics required for one to develop a strong understanding of the states of these technologies and the paths for taking them from R&D to the hands of consumers on a massive scale. As such, the book provides both theory as well as technology development results and trends.
The Advanced Study Institute on "Theoretical Aspects and New Developments in Magneto-Optics" was held at the University of Antwerpen (R.U.C.A.), from July 16 to July 28, 1979. The Institute was sponsored by NATO. Co-sponsors were: Agfa-Gevaert (Belgium), A.S.L.K. (Belgium), Bell Telephone Mfg. CO. (Belgium), Esso Belgium, Generale Bankmaatschappij (Belgium), General Motors (Belgium), I.B.M. (Belgium), Kredietbank (Belgium), Metallurgie Hoboken-Over pelt (Belgium), National Science Foundation (U.S.A). A total of 60 lecturers and participants attended the Institute. Scope of the Institute The magneto-optic phenomena are due to the change of the polarizability of a substance as a result of the splitting of the quantized energy bands. Most of these phenomena were discovered during the second half of this century. The understanding of the magneto-optical effects of all kinds, however, was brought by the advent of quantum mechanics, and since then important progress has been made in many fields of experimental methods and techniques.
This book examines the physical principles behind the operation of high-speed transistors operating at frequencies above 10 GHz and having switching times less than 100 psec. If the 1970s cannot be remembered for the opportunities for creating and extensively using transistors operating at such high speeds, then, the situation has changed radically because of rapid progress in sub micrometer technology for manufacturing transistors and integrated circuits from GaAs and other semiconductor materials and the powerful influx of new physical concepts. Not only have transistors having switching speeds of 50-100 psec operating in the 10-20 GHz region been created in recent years, but the possibilities for manufacturing transistors operating one to two orders of magnitude faster have been revealed. As superhigh-speed transistors have been created, many of the most important areas of technology such as communications, computing technology, television, radar, and the manufacture of scientific, industrial, and medical equipment have qualitatively changed. Microwave transistors operating at millimeter wavelengths make it possible to produce compact and highly efficient equipment for communications and radar technology. Transistors with switching speeds better than 10-100 psec make it possible to increase the speed of microprocessors and other computer components to tens of billions of operations per second and thereby solve one of the most pressing problems of modern electronics - increasing the speed of digital information processing.
This book is concerned primarily with the fundamental theory underlying the physical and chemical properties of crystalIine semiconductors. After basic introductory material on chemical bonding, electronic band structure, phonons, and electronic transport, some emphasis is placed on surface and interfacial properties, as weil as effects of doping with a variety of impurities. Against this background, the use of such materials in device physics is examined and aspects of materials preparation are discussed briefty. The level of presentation is suitable for postgraduate students and research workers in solid-state physics and chemistry, materials science, and electrical and electronic engineering. Finally, it may be of interest to note that this book originated in a College organized at the International Centre for Theoretical Physics, Trieste, in Spring 1984. P. N. Butcher N. H. March M. P. Tosi vii Contents 1. Bonds and Bands in Semiconductors 1 E. Mooser 1. 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 2. The Semiconducting Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3. Bond Approach Versus Band Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 4. Construction of the Localized X by Linear Combination of n Atomic Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1. 5. The General Octet Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1. 6. The Aufbau-Principle of the Crystal Structure of Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 7. A Building Principle for Polyanionic Structures . . . . . . . . . . . . . . . . . . . . . . 29 I. H. Structural Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1. 9. Chemical Bonds and Semiconductivity in Transition-Element Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1. 10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2. Electronic Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 G. Grosso 2. 1. Two Different Strategies for Band-Structure Calculations . . . . . . . 55 2. 2. The Tight-Binding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lanthanides have fascinated scientists for more than two centuries now, and since efficient separation techniques were established roughly 50 years ago, they have increasingly found their way into industrial exploitation and our everyday lives. Numerous applications are based on their unique luminescent properties, which are highlighted in this volume. It presents established knowledge about the photophysical basics, relevant lanthanide probes or materials, and describes instrumentation-related aspects including chemical and physical sensors. The uses of lanthanides in bioanalysis and medicine are outlined, such as assays for in vitro diagnostics and research. All chapters were compiled by renowned scientists with a broad audience in mind, providing both beginners in the field and advanced researchers with comprehensive information on on the given subject. "
of progress has been made in the development of In the last twenty years a great amount new magnetic materials. Permanent magnets have progressed from the AlNiCo's (with (BH)m-8 MGOe) to the strong rare-earth magnets of SmCo BH)m-20 MGOe), Sm2(Co, Fe, Cu, Zrh7 s BH)m-30 MGOe) and the recently discovered Nd-Fe-B super-magnets with (BH)m-50 MGOe. For years the magnetic storage industry has employed Fe0 and CrO for storage media and 2 3 z permalloys and ferrites for recording heads. The recent development of thin film heads, the demand of higher density of information storage and the emergence of completely new technologies, like magneto-optics, call for entirely new types of magnetic materials. Another area in which new techniques of materials preparation have made a dramatic impact is the epitaxial growth of magnetic films. Recent work has shown that this process can be controlled on the scale of atomic monolayers permitting the growth of totally artificial structures, such as artificial superlattices with a resolution on this scale. Epitaxial growth has also permitted the stabilization of metastable phases in thin film form. These new phases often possess striking properties, such as strong perpendicular anisotropies, which may prove useful for technological applications such as recording. Research on magnetic multilayers and superlattices is increasing at an accelerating pace. Complex couplings between different magnetic layers lead to new properties not seen in bulk materials.
GaAs devices and integrated circuits have emerged as leading contenders for ultra-high-speed applications. This book is intended to be a reference for a rapidly growing GaAs community of researchers and graduate students. It was written over several years and parts of it were used for courses on GaAs devices and integrated circuits and on heterojunction GaAs devices developed and taught at the University of Minnesota. Many people helped me in writing this book. I would like to express my deep gratitude to Professor Lester Eastman of Cornell University, whose ideas and thoughts inspired me and helped to determine the direction of my research work for many years. I also benefited from numerous discussions with his students and associates and from the very atmosphere of the pursuit of excellence which exists in his group. I would like to thank my former and present co-workers and colleagues-Drs. Levinstein and Gelmont of the A. F. Ioffe Institute of Physics and Technology, Professor Melvin Shaw of Wayne State University, Dr. Kastalsky of Bell Communi cations, Professor Gary Robinson of Colorado State University, Professor Tony Valois, and Dr. Tim Drummond of Sandia Labs-for their contributions to our joint research and for valuable discussions. My special thanks to Professor Morko.;, for his help, his ideas, and the example set by his pioneering work. Since 1978 I have been working with engineers from Honeywell, Inc.-Drs."
The Institute for Amorphous Studies was founded in 1982 as the international center for the investigation of amorphous mate rials. It has since played an important role in promoting the und er standing of disordered matter in general. An Institute lecture series on "Fundamentals of Amorphous Materials and Devices" was held during 1982-83 with distinguished speakers from universities and industry. These events were free and open to the public, and were attended by many representatives of the scientific community. The lectures themselves were highly successful inasmuch as they provided not only formal instruction but also an opportunity for vigorous and stimulating debate. That last element could not be captured within the pages of a book I but the lectures concentrated on the latest advances in the field I which is why their essential contents are he re reproduced in collective form. Together they constitute an interdisciplinary status report of the field. The speakers brought many different viewpoints and a variety of back ground experiences io bear on the problems involved I but though language and conventions vary I the essential unity of the concerns is very clear I as indeed are the ultimate benefits of the many-sided approach."
The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include multiphoton ionization processes, atomic collisions in the presence of a strong laser field, Coulomb explosion following rapid ionization of a molecule and the production of high harmonics of the laser source. Another important topic reviewed in this ASI is the lasercooling ofatoms.
Glasses containing metallic nanoparticles exhibit very promising linear and nonlinear optical properties, mainly due to the surface plasmon resonances (SPRs) of the nanoparticles. The spectral position in the visible and near-infrared range and polarization dependence of the SPR arecharacteristically determined by the nanoparticles shapes. The focus of "Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites" is the interaction of intense ultra-short laser pulses with glass containing silver nanoparticles embedded in soda-lime glass, and nanostructural modifications in metal-glass nanocomposites induced by such laser pulses. In order to provide a comprehensive physical picture of the processes leading to laser-induced persistent shape transformation of the nanoparticles, series of experimental results investigating the dependences of laser assisted shape modifications of nanoparticles with laser pulse intensity, excitation wavelength, temperature are considered. In addition, the resulting local optical dichroism allows producing very flexibly polarizing optical (sub-) microstructures with well-specified optical properties. The achieved considerable progress towards technological application of this technique, in particular also for long-term optical data storage, is also discussed.
This volume contains the papers presented at the NATO Advanced Research Workshop on "Magnetism and Structure in Systems of Reduced Dimension," held at l'Institut d'Etudes Scientifiques de Cargese - U.M.S. - C.N.R.S. - Universite de Corte Universite de Nice Sophia - Antipolis during June 15-19, 1992. The ordering of papers in the volume reflects the sequence of papers presented at the workshop. The aim was not to segregate the papers into rigidly defmed areas but to group the papers into small clusters, each cluster having a common theme. In this way the parallel, rather than serial, development of areas such as preparation of films, magnetic and structural characterization was highlighted. Indeed the success of the field depends on such parallel development and is assisted by workshops of this nature and the international collaborations which they foster. The organizers and participants of the NATO workshop express their thanks to Mme. Marie-France Hanseier and the staff at l'Institut d'Etudes Scientifiques de Cargese U.M.S. - C.N.R.S. - Universite de Corte - Universite de Nice Sophia - Antipolis for making the workshop and local arrangements a memorable success. Warm thanks are also expressed to Varadachari Sadagopan and Pascal Stefanou for their encouragement and help in making the workshop a reality. We are also grateful to Kristl Hathaway, Larry Cooper and Gary Prinz for advice in developing the workshop program." |
![]() ![]() You may like...
Hybrid Nanomaterials for Sustainable…
Janardhan Reddy Koduru, Rama Rao Karri, …
Paperback
R4,738
Discovery Miles 47 380
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Plasmonic Materials and Metastructures…
Shangjr Gwo, Andrea Alù, …
Paperback
R5,126
Discovery Miles 51 260
Functionalized Nanomaterials for…
Sudheesh K. Shukla, Chaudhery Mustansar Hussain, …
Paperback
R5,249
Discovery Miles 52 490
Functionalization of 2D Materials and…
Waleed A. El-Said, Nabil Ahmed Abdel Ghany
Paperback
R4,849
Discovery Miles 48 490
Metal Oxide-Carbon Hybrid Materials…
Muhammad Akram Chaudhry, Rafaqat Hussain, …
Paperback
R5,259
Discovery Miles 52 590
The Electrocaloric Effect - Materials…
Andrei L. Kholkin, Oleg V. Pakhomov, …
Paperback
R5,242
Discovery Miles 52 420
|