![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
Although the use of fuzzy control methods has grown nearly to the level of classical control, the true understanding of fuzzy control lags seriously behind. Moreover, most engineers are well versed in either traditional control or in fuzzy control-rarely both. Each has applications for which it is better suited, but without a good understanding of both, engineers cannot make a sound determination of which technique to use for a given situation.
This volume contains the Proceedings of the First International Congress for the Advancement of Mechanism, Machine, Robotics and Mechatronics Sciences (ICAMMRMS-2017), held in Beirut, Lebanon, October 2017. The book consists of twenty papers in six different fields covering multiple angles of machine and robotics sciences: mechanical design, control, structural synthesis, vibration study, and manufacturing. This volume is of interest to mechanical as well as electrical engineers.
This book makes the area of integration of renewable energy into the existing electricity grid accessible to engineers and researchers. This is a self-contained text which has models of power system devices and control theory necessary to understand and tune controllers in use currently. The new research in renewable energy integration is put into perspective by comparing the change in the system dynamics as compared to the traditional electricity grid. The emergence of the voltage stability problem is motivated by extensive examples. Various methods to mitigate this problem are discussed bringing out their merits clearly. As a solution to the voltage stability problem, the book covers the use of FACTS devices and basic control methods. An important contribution of this book is to introduce advanced control methods for voltage stability. It covers the application of output feedback methods with a special emphasis on how to bound modelling uncertainties and the use of robust control theory to design controllers for practical power systems. Special emphasis is given to designing controllers for FACTS devices to improve low-voltage ride-through capability of induction generators. As generally PV is connected in low voltage distribution area, this book also provides a systematic control design for the PV unit in distribution systems. The theory is amply illustrated with large IEEE Test systems with multiple generators and dynamic load. Controllers are designed using Matlab and tested using full system models in PSSE.
Research on humanoid robots has been mostly with the aim of developing robots that can replace humans in the performance of certain tasks. Motion planning for these robots can be quite difficult, due to their complex kinematics, dynamics and environment. It is consequently one of the key research topics in humanoid robotics research and the last few years have witnessed considerable progress in the field. Motion Planning for Humanoid Robots surveys the remarkable recent advancement in both the theoretical and the practical aspects of humanoid motion planning. Various motion planning frameworks are presented in Motion Planning for Humanoid Robots, including one for skill coordination and learning, and one for manipulating and grasping tasks. The problem of planning sequences of contacts that support acyclic motion in a highly constrained environment is addressed and a motion planner that enables a humanoid robot to push an object to a desired location on a cluttered table is described. The main areas of interest include: * whole body motion planning, * task planning, * biped gait planning, and * sensor feedback for motion planning. Torque-level control of multi-contact behavior, autonomous manipulation of moving obstacles, and movement control and planning architecture are also covered. Motion Planning for Humanoid Robots will help readers to understand the current research on humanoid motion planning. It is written for industrial engineers, advanced undergraduate and postgraduate students.
One of the most important methods in dealing with the optimization of large, complex systems is that of hierarchical decomposition. The idea is to reduce the overall complex problem into manageable approximate problems or subproblems, to solve these problems, and to construct a solution of the original problem from the solutions of these simpler prob lems. Development of such approaches for large complex systems has been identified as a particularly fruitful area by the Committee on the Next Decade in Operations Research (1988) [42] as well as by the Panel on Future Directions in Control Theory (1988) [65]. Most manufacturing firms are complex systems characterized by sev eral decision subsystems, such as finance, personnel, marketing, and op erations. They may have several plants and warehouses and a wide variety of machines and equipment devoted to producing a large number of different products. Moreover, they are subject to deterministic as well as stochastic discrete events, such as purchasing new equipment, hiring and layoff of personnel, and machine setups, failures, and repairs.
Mechatronics is a synergic discipline integrating precise mechanics, electrotechnics, electronics and IT technologies. The main goal of mechatronical approach to design of complex products is to achieve new quality of their utility value at reasonable price. Successful accomplishment of this task would not be possible without application of advanced software and hardware tools for simulation of design, technologies and production control and also for simulation of behavior of these products in order to provide the highest possible level of spatial and functional integration of the final product. This book brings a review of the current state of the art in mechatronics, as presented at the 8th International Conference Mechatronics 2009, organized by the Brno Technical University, Faculty of Mechanical Engineering, Czech Republic. The specific topics of the conference are Modelling and Simulation, Metrology & Diagnostics, Sensorics & Photonics, Control & Robotics, MEMS Design & Mechatronic Products, Production Machines and Biomechanics. The selected contributions provide an insight into the current development of these scientific disciplines, present the new results of research and development and indicate the trends of development in the interdisciplinary field of mechatronic systems. Therefore, the book provides the latest and helpful information both for the R&D specialists and for the designers working in mechatronics and related fields.
In the research area of computer science, practitioners are constantly searching for faster platforms with pertinent results. With analytics that span environmental development to computer hardware emulation, problem-solving algorithms are in high demand. Field-Programmable Gate Array (FPGA) is a promising computing platform that can be significantly faster for some applications and can be applied to a variety of fields. FPGA Algorithms and Applications in the IoT, AI, and High-Performance Computing provides emerging research exploring the theoretical and practical aspects of computable algorithms and applications within robotics and electronics development. Featuring coverage on a broad range of topics such as neuroscience, bioinformatics, and artificial intelligence, this book is ideally designed for computer science specialists, researchers, professors, and students seeking current research on cognitive analytics and advanced computing.
Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithms It will be of great interest to researchers in computational finance, machine learning and data science. About the Authors Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019. Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.
This monograph presents and analyzes the optimization, game-theoretic and simulation models of control mechanisms for ecological-economic systems. It is devoted to integrated assessment mechanisms for total risks and losses, penalty mechanisms, risk payment mechanisms, financing and costs compensation mechanisms for risk level reduction, sales mechanisms for risk level quotas, audit mechanisms, mechanisms for expected losses reduction, economic motivation mechanisms, optimization mechanisms for regional environmental (risk level reduction) programs, and mechanisms for authorities' interests coordination. The book is aiming at undergraduate and postgraduate students, as well as at experts in mathematical modeling and control of ecological economic, socioeconomic and organizational systems.
Advances in H Control Theory is concerned with state-of-the-art developments in three areas: the extended treatment of mostly deterministic switched systems with dwell-time; the control of retarded stochastic state-multiplicative noisy systems; and a new approach to the control of biochemical systems, exemplified by the threonine synthesis and glycolytic pathways. Following an introduction and extensive literature survey, each of these major topics is the subject of an individual part of the book. The first two parts of the book contain several practical examples taken from various fields of control engineering including aircraft control, robot manipulation and process control. These examples are taken from the fields of deterministic switched systems and state-multiplicative noisy systems. The text is rounded out with short appendices covering mathematical fundamentals: -algebra and the input-output method for retarded systems. Advances in H Control Theory is written for engineers engaged in control systems research and development, for applied mathematicians interested in systems and control and for graduate students specializing in stochastic control.
This book presents a foray into the fascinating process of risk management, beginning from classical methods and approaches to understanding risk all the way into cutting-age thinking. Risk management by necessity must lie at the heart of governing our ever more complex digital societies. New phenomena and activities necessitate a new look at how individuals, firms, and states manage the uncertainty they must operate in. Initial chapters provide an introduction to traditional methods and show how they can be built upon to better understand the workings of the modern economy. Later chapters review digital activities and assets like cryptocurrencies showing how such emergent risks can be conceptualized better. Network theory figures prominently and the book demonstrates how it can be used to gauge the risk in the digital sectors of the economy. Predicting the unpredictable black swan events is also discussed in view of a wider adoption of economic simulations. The journey concludes by looking at how individuals perceive risk and make decisions as they operate in a virtual social network. This book interests the academic audience, but it also features insights and novel research results that are relevant for practitioners and policymakers.
This monograph focuses on characterizing the stability and performance consequences of inserting limited-capacity communication networks within a control loop. The text shows how integration of the ideas of control and estimation with those of communication and information theory can be used to provide important insights concerning several fundamental problems such as: * minimum data rate for stabilization of linear systems over noisy channels; * minimum network requirement for stabilization of linear systems over fading channels; and * stability of Kalman filtering with intermittent observations. A fundamental link is revealed between the topological entropy of linear dynamical systems and the capacities of communication channels. The design of a logarithmic quantizer for the stabilization of linear systems under various network environments is also extensively discussed and solutions to many problems of Kalman filtering with intermittent observations are demonstrated. Analysis and Design of Networked Control Systems will interest control theorists and engineers working with networked systems and may also be used as a resource for graduate students with backgrounds in applied mathematics, communications or control who are studying such systems.
Presents a number of new and potentially useful self-learning (adaptive) control algorithms and theoretical as well as practical results for both unconstrained and constrained finite Markov chains-efficiently processing new information by adjusting the control strategies directly or indirectly.
This up-to-the-minute reference/text provides vital information on new approaches to stability, stabilization, control design, and filtering of electronics and computer systems-explicating the latest developments in time-delay systems (TDS) and uncertain time-delay systems (UTDS). Features helpful appendices detailing important facets of matrix theory, standard lemmas and mathematical results, and applications of industry-tested software Utilizing mathematical formality to foster intuitive understanding, Robust Control and Filtering for Time-Delay Systems discusses finite capabilities of data processing and transmission throughout systems analyzes inherent physical phenomena and computational delays impacting system performance showcases the state-space approach in systems representation and analysis defines and delineates concepts of robustness, robust performance, and robust design highlights linear and many classes of nonlinear system theory, matrix theory, and modern control theory describes delays as constant or time-varying, known or unknown, deterministic or stochastic assesses continuous-time and discrete-time systems independently and in relation to each other elucidates stability analysis and control synthesis supplies unification of results on control design and filtering and more Containing over 300 bibliographic citations and more than 1500 equations, Robust Control and Filtering for Time-Delay Systems is a must-read reference for electrical, electronics, computer, and control engineers, and an exceptional text for upper-level undergraduate and graduate students in these disciplines.
Production costs are being reduced by automation, robotics, computer-integrated manufacturing, cost reduction studies and more. These new technologies are expensive to buy, repair, and maintain. Hence, the demand on maintenance is growing and its costs are escalating. This new environment is compelling industrial maintenance organizations to make the transition from fixing broken machines to higher-level business units for securing production capacity. On the academic front, research in the area of maintenance management and engineering is receiving tremendous interest from researchers. Many papers have appeared in the literature dealing with the modeling and solution of maintenance problems using operations research (OR) and management science (MS) techniques. This area represents an opportunity for making significant contributions by the OR and MS communities. Maintenance, Modeling, and Optimization provides in one volume the latest developments in the area of maintenance modeling. Prominent scholars have contributed chapters covering a wide range of topics. We hope that this initial contribution will serve as a useful informative introduction to this field that may permit additional developments and useful directions for more research in this fast-growing area. The book is divided into six parts and contains seventeen chapters. Each chapter has been subject to review by at least two experts in the area of maintenance modeling and optimization. The first chapter provides an introduction to major maintenance modeling areas illustrated with some basic models. Part II contains five chapters dealing with maintenance planning and scheduling. Part III deals with preventive maintenance in six chapters. Part IV focuses on condition-based maintenance and contains two chapters. Part V deals with integrated production and maintenance models and contains two chapters. Part VI addresses issues related to maintenance and new technologies, and also deals with Just-in-Time (JIT) and Maintenance.
Quantitative Feedback Design of Linear and Nonlinear Control Systems is a self-contained book dealing with the theory and practice of Quantitative Feedback Theory (QFT). The author presents feedback synthesis techniques for single-input single-output, multi-input multi-output linear time-invariant and nonlinear plants based on the QFT method. Included are design details and graphs which do not appear in the literature, which will enable engineers and researchers to understand QFT in greater depth. Engineers will be able to apply QFT and the design techniques to many applications, such as flight and chemical plant control, robotics, space, vehicle and military industries, and numerous other uses. All of the examples were implemented using MatlabA(R) Version 5.3; the script file can be found at the author's Web site. QFT results in efficient designs because it synthesizes a controller for the exact amount of plant uncertainty, disturbances and required specifications. Quantitative Feedback Design of Linear and Nonlinear Control Systems is a pioneering work that illuminates QFT, making the theory - and practice - come alive.
This book is intended to be an exhaustive study on regularity and other properties of continuity for different types of non-additive multimeasures and with respect to different types of topologies. The book is addressed to graduate and postgraduate students, teachers and all researchers in mathematics, but not only. Since the notions and results offered by this book are closely related to various notions of the theory of probability, this book will be useful to a wider category of readers, using multivalued analysis techniques in areas such as control theory and optimization, economic mathematics, game theory, decision theory, etc. Measure and integration theory developed during the early years of the 20th century is one of the most important contributions to modern mathematical analysis, with important applications in many fields. In the last years, many classical problems from measure theory have been treated in the non-additive case and also extended in the set-valued case. The property of regularity is involved in many results of mathematical analysis, due to its applications in probability theory, stochastic processes, optimal control problems, dynamical systems, Markov chains, potential theory etc.
The contributions for this book have been gathered over several years from conferences held in the series of Mechatronics and Machine Vision in Practice, the latest of which was held in Ankara, Turkey. The essential aspect is that they concern practical applications rather than the derivation of mere theory, though simulations and visualization are important components. The topics range from mining, with its heavy engineering, to the delicate machining of holes in the human skull or robots for surgery on human flesh. Mobile robots continue to be a hot topic, both from the need for navigation and for the task of stabilization of unmanned aerial vehicles. The swinging of a spray rig is damped, while machine vision is used for the control of heating in an asphalt-laying machine. Manipulators are featured, both for general tasks and in the form of grasping fingers. A robot arm is proposed for adding to the mobility scooter of the elderly. Can EEG signals be a means to control a robot? Can face recognition be achieved in varying illumination?"
Hidenori Kimura, renowned system and control theorist, turned 60 years of age in November, 2001. To celebrate this memorable occasion, his friends, collaborators, and former students gathered from all over the world and held a symposium in his honor on November 1 and 2, 2001, at the Sanjo Conference Hall at the University of Tokyo. Reflecting his current research interests, the symposium was entitled "Cybernetics in the 21st Century: Information and Complexity in Control Theory," and it drew nearly 150 attendees. There were twenty-five lectures, on which the present volume is based. Hidenori Kimura was born on November 3, 1941, in Tokyo, just prior to the outbreak of the Second World War. It is not hard to imagine, then, that his early days, like those of so many of his contemporaries, must have been difficult. Fortunately, the war ended in 1945, and his generation found itself thoroughly occupied with the rebuilding effort and with Japan's uphill journey in the last half-century. He entered the University of Tokyo in 1963, received a B. S. in 1965, an M. S. in 1967, and, in 1970, a Ph. D. degree for his dissertation "A Study of Differential Games. " After obtaining his doctorate, he joined the Department of Control En gineering at Osaka University as a research associate, and in 1973 he was promoted to an associate professor."
The structural optimization procedure presented in this book makes it possible to achieve seismic protection through integrated structural/control system design. In particular, it is explained how slender structural systems with a high seismic performance can be achieved through inclusion of viscous and viscoelastic dampers as an integral part of the system. Readers are provided with essential introductory information on passive structural control and passive energy dissipation systems. Dynamic analyses of both single and multiple degree of freedom systems are performed in order to verify the achievement of pre-assigned performance targets, and it is explained how the optimal integrated design methodology, also relevant to retrofitting of existing buildings, should be applied. The book illustrates how structural control research is opening up new possibilities in structural forms and configurations without compromising structural performance.
This book presents a foundation for a broad class of mobile robot mapping and navigation methodologies for indoor, outdoor, and exploratory missions. It addresses the challenging problem of autonomous navigation in dynamic environments, presenting new ideas and approaches in this emerging technical domain. Coverage discusses in detail various related challenging technical aspects and addresses upcoming technologies in this field.
As design complexity in chips and devices continues to rise, so,
too, does the demand for functional verification. Principles of
Functional Verification is a hands-on, practical text that will
help train professionals in the field of engineering on the
methodology and approaches to verification.
Predictive control is a powerful tool in dealing with those processes with large time delays. Generalized Predictive Control (GPC) is the most popular approach to the subject, and this text discusses the application of GPC starting with the concept of long-range predictive control and its need in medicine (particularly automated drug deliveries). The concept of adaptation is also emphasized with respect to patient-to-patient parameter variations. Subsequent chapters discuss interactions, comparisons and various aspects of GPC. The book concludes by putting into perpective the generic nature of the architecture built around GPC and which provides model-based fault diagnosis with control.
This book provides robust analysis and synthesis tools for Markovian jump systems in the finite-time domain with specified performances. It explores how these tools can make the systems more applicable to fields such as economic systems, ecological systems and solar thermal central receivers, by limiting system trajectories in the desired bound in a given time interval. Robust Control for Discrete-Time Markovian Jump Systems in the Finite-Time Domain focuses on multiple aspects of finite-time stability and control, including: finite-time H-infinity control; finite-time sliding mode control; finite-time multi-frequency control; finite-time model predictive control; and high-order moment finite-time control for multi-mode systems and also provides many methods and algorithms to solve problems related to Markovian jump systems with simulation examples that illustrate the design procedure and confirm the results of the methods proposed. The thorough discussion of these topics makes the book a useful guide for researchers, industrial engineers and graduate students alike, enabling them systematically to establish the modeling, analysis and synthesis for Markovian jump systems in the finite-time domain.
Actuator saturation is probably the most frequent nonlinearity encountered in control applications. Input saturation leads to controller windup, removable by structural modification during compensator realization and plant windup which calls for additional dynamics. Peter Hippe presents solutions to the windup prevention problem for stable and unstable single-input-single-output and multiple-input-multiple-output (MIMO) systems. The solutions use only standard tools for the investigation of linear systems a" state equations, transfer functions, etc. The stability tests are based on well-known criteria for loops consisting of a linear part with isolated sector-type nonlinearity. Less rigorous "engineering solutions" which guarantee improved performance but without strict proof of stability are also demonstrated. MIMO systems in which the behaviour of controlled variables is decoupled require specific input vectors and so also suffer problems of directionality when their input signals saturate. This can have extremely deleterious consequences for closed-loop behaviour. Windup in Control offers an exact solution to this directionality problem for stable and unstable systems. The methods laid out in this survey also integrate solutions for applications with rate-constrained actuators and for bumpless transfer from manual to automatic during system start-up or in override control. Developments in control methods are always supplemented by easily repeated numerical examples. Academics doing control-related research in electronics, mechanics, or mechatronics and engineers working in the process industries will find this book an extremely useful overview of systematic windupprevention for all kinds of systems. It also has valuable insights to offer the graduate student of control. |
You may like...
Becoming Human with Humanoid - From…
Ahmad Hoirul Basori, Ali Leylavi Shoushtari, …
Hardcover
R3,068
Discovery Miles 30 680
Closing The Gap - The Fourth Industrial…
Tshilidzi Marwala
Paperback
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
Artificial Intelligence in Real-Time…
Y.-H. Pao, S.R. LeClair
Paperback
R2,020
Discovery Miles 20 200
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
|