![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software development - Control of gasoline engines, control of air/fuel, ignition, knock, idle, coolant, adaptive control functions - Control of diesel engines, combustion models, air flow and exhaust recirculation control, combustion-pressure-based control (HCCI), optimization of feedforward and feedback control, smoke limitation and emission control This book is an introduction to electronic engine management with many practical examples, measurements and research results. It is aimed at advanced students of electrical, mechanical, mechatronic and control engineering and at practicing engineers in the field of combustion engine and automotive engineering.
One of the main goals of optimal control theory is to provide a theoretical basis for choosing an appropriate controller for whatever system is under consideration by the researcher or engineer. Two popular norms that have proved useful are known as H-2 and H - infinity control. The first has been particularly applicable to problems arising in the aerospace industry. However, most industrial problems are badly modeled and the second norm proved to be more appropriate when the actual conditions of the problem did not conform to the stipulated conditions of the theory. This book takes the topic of H-infinity control as a point of departure and pursues an improved controller design which has been suggested in the mainstream of robust control. Its main theme, minimum entropy control, provides a means of trading off some of the features of other control problems. The book is aimed at research workers in networking systems as well as those in operator theory and linear multivariable control. The use of stochastic methods makes the book also of importance to the circuits and systems community. CONTENTS: Preface Introduction Preliminaries Induced Operator Norms Discrete-Time Entropy Connections With Related Optimal Control Problems Minimum Entropy Control Continuous-Time Entropy A. Proof of Theorem B. Proof of Theorem Bibliography Notation Index"
Very often, practical design of embedded systems lacks consistency resulting in computer control systems that do not provide the performance they should. Most notably they lack dependability, a key property now that programmed electronic devices are so pervasive, even in extremely safety-critical applications. Distributed Embedded Control Systems handles the domains encountered when designing a distributed embedded computer control system as an integrated whole. First to be discussed are some basic issues about real-time systems and their properties, specifically safety. Then, system and hardware architectures are dealt with: areas like scheduling, asymmetrical distributed multiprocessor architectures, time-triggered communications, middleware, fault-tolerant peripherals, etc. Next, programming issues, embodying desired properties, basic language subsets, object orientation and language support for hardware and software specifications and co-design are elaborated and finally, the prototype implementation of a distributed embedded control system is given as a detailed example. Different audiences will find much of interest in this work: industrial professionals are given guidelines for the design of embedded hardware and software with fault tolerance that will help them to decide which methods, tools and solutions they should employ and to which features they should pay attention. Academics have a new source of solutions and further questions to stimulate research and it will also be informative for graduate students in electrical, control and computer engineering.
"Dynamics and Control of Mechanical Systems in Offshore Engineering" is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them. The text provides: . a complete framework of dynamical analysis and control design for marine mechanical systems; . new results on the dynamical analysis of riser, mooring and installation systems together with a general modeling method for a class of MMS; . a general method and strategy for realizing the control objectives of marine systems with guaranteed stability the effectiveness of which is illustrated by extensive numerical simulation; and . approximation-based control schemes using neural networks for installation of subsea structures with attached thrusters in the presence of time-varying environmental disturbances and parametric uncertainties. Most of the results presented are analytical with repeatable design algorithms with proven closed-loop stability and performance analysis of the proposed controllers is rigorous and detailed. "Dynamics and Control of Mechanical Systems in Offshore Engineering" is primarily intended for researchers and engineers in the system and control community, but graduate students studying control and marine engineering will also find it a useful resource as will practitioners working on the design, running or maintenance of offshore platforms."
The extended and revised second edition of this successful monograph presents advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS). The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. In the six years since the first edition of the book has been published research on the FACTS has continued to flourish while renewable energy has developed into a mature and booming global green business. The second edition reflects the new developments in converter configuration, smart grid technologies, super power grid developments worldwide, new approaches for FACTS control design, new controllers for distribution system control, and power electronic controllers in wind generation operation and control. The latest trends of VSC-HVDC with multilevel architecture have been included and four completely new chapters have been added devoted to Multi-Agent Systems for Coordinated Control of FACTS-devices, Power System Stability Control using FACTS with Multiple Operating Points, Control of a Looping Device in a Distribution System, and Power Electronic Control for Wind Generation. "
This book presents the cyber culture of micro, macro, cosmological, and virtual computing. The book shows how these work to formulate, explain, and predict the current processes and phenomena monitoring and controlling technology in the physical and virtual space.The authors posit a basic proposal to transform description of the function truth table and structure adjacency matrix to a qubit vector that focuses on memory-driven computing based on logic parallel operations performance. The authors offer a metric for the measurement of processes and phenomena in a cyberspace, and also the architecture of logic associative computing for decision-making and big data analysis.The book outlines an innovative theory and practice of design, test, simulation, and diagnosis of digital systems based on the use of a qubit coverage-vector to describe the functional components and structures. Authors provide a description of the technology for SoC HDL-model diagnosis, based on Test Assertion Blocks Activated Graph. Examples of cyber-physical systems for digital monitoring and cloud management of social objects and transport are proposed. A presented automaton model of cosmological computing explains the cyclical and harmonious evolution of matter-energy essence, and also a space-time form of the Universe.
Controlled stochastic processes with discrete time form a very interest ing and meaningful field of research which attracts widespread attention. At the same time these processes are used for solving of many applied problems in the queueing theory, in mathematical economics. in the theory of controlled technical systems, etc. . In this connection, methods of the theory of controlled processes constitute the every day instrument of many specialists working in the areas mentioned. The present book is devoted to the rather new area, that is, to the optimal control theory with functional constraints. This theory is close to the theory of multicriteria optimization. The compromise between the mathematical rigor and the big number of meaningful examples makes the book attractive for professional mathematicians and for specialists who ap ply mathematical methods in different specific problems. Besides. the book contains setting of many new interesting problems for further invf'stigatioll. The book can form the basis of special courses in the theory of controlled stochastic processes for students and post-graduates specializing in the ap plied mathematics and in the control theory of complex systf'ms. The grounding of graduating students of mathematical department is sufficient for the perfect understanding of all the material. The book con tains the extensive Appendix where the necessary knowledge ill Borel spaces and in convex analysis is collected. All the meaningful examples can be also understood by readers who are not deeply grounded in mathematics."
The complete control system engineering solution for continuous and batch manufacturing plants. This book presents a complete methodology of control system design for continuous and batch manufacturing in such diverse areas as pulp and paper, petrochemical, chemical, food, pharmaceutical, and biochemical production. Geared to practicing engineers faced with designing increasingly more sophisticated control systems in response to present-day economic and regulatory pressures, Plantwide Process Control focuses on the engineering portion of a plant automation improvement project. It features a full control design information package (Control Requirements Definition or CRD), and guides readers through all steps of the automation process—from the initial concept to design, simulation, testing, implementation, and operation. This unique and practical resource:
Surge Control of Active-magnetic-bearing-suspended Centrifugal
Compressors sets out the fundamentals of integrating active
magnetic bearing (AMB) rotor suspension technology in compressor
systems, and describes how this relatively new bearing technology
can be employed in active control of compressor surge initiation.
The authors provide a self-contained and comprehensive review of
rotordynamics and the fundamentals of AMB technology. The active
stabilization of compressor surge employing AMBs in a machine is
fully explored, from modeling of instability and controller design,
to the implementation and experimental testing of the control
algorithm in a specially-constructed, industrial-size centrifugal
compression system. The results of these tests demonstrate the
great potential of the new surge control method suggested in this
text.
Model based fuzzy control uses a given conventional or fuzzy open loop model of the plant under control to derive the set of fuzzy if-then rules for the fuzzy controller. Of central interest are the stability, performance, and robustness properties of the resulting closed loop system involving a conventional or fuzzy model and a fuzzy controller. The major objective of model based fuzzy control is to use the full range of linear and nonlinear design and analysis methods to design such fuzzy controllers with properties superior to non-fuzzy controllers designed using the same techniques. This objective has already been achieved for fuzzy sliding mode controllers and fuzzy gain schedulers - the main topics of this book. A comprehensive and up-to-date treatment of model based fuzzy control and its relationship to conventional control, the text is intended to serve as a guide for scientists and practitioners and to provide introductory material on fuzzy control for courses in control theory.
Hybrid supervisory systems integrate and exchange information between discrete- and continuous-data-based controllers and subsystems. Application areas include process, manufacturing and service industries, healthcare, telecommunication, transportation and logistics, among others. From the hardware point of view, the rapid progress of information-processing power and its commercial availability has made possible the development of complex supervisory systems. Many barriers that restrained the evolution of supervisory systems in the past have been removed by the recent popularisation of the open-system paradigm. On the other hand, software has not followed the evolution in hardware and both the industrial and scientific communities have pointed out the need for a generic approach that guides the development of hybrid supervisory systems. Modelling and Analysis of Hybrid Supervisory Systems introduces a modelling formalism that merges Petri nets, differential equation systems and object-oriented methods; a formalism that is adequate for modelling complex and large-scale systems. To guide the designer and conduct hybrid modelling, the book describes a method that starts from the requirements of a supervisory system and results in a proposal for such a system. The method is mainly based on Unified Modelling Language diagrams, well-known tools in both academia and industry. In order to ensure that the supervisory system will behave as expected under any operational circumstances, a validation procedure that allows verification of the formal properties of the hybrid model is presented. In building a bridge between what is developed in academic research and what is available to theindustrial professional, this monograph places particular emphasis on the description of real-world examples; three of these a" an HVAC management system, a landing system and a cane-sugar factory a" are discussed at length. It will interest academic researchers working with hybrid systems and their applications and will answer the need of industry-based engineers to unify their control of continuous- and discrete-event systems.
This informative monograph helps meet the challenge of applying distributed control to dynamical systems. It shows readers how to bring the best parts of various control paradigms to bear in making distributed control more flexible and responsive.
Recent years have witnessed important developments in those areas of the mathematical sciences where the basic model under study is a dynamical system such as a differential equation or control process. Many of these recent advances were made possible by parallel developments in nonlinear and nonsmooth analysis. The latter subjects, in general terms, encompass differential analysis and optimization theory in the absence of traditional linearity, convexity or smoothness assumptions. In the last three decades it has become increasingly recognized that nonlinear and nonsmooth behavior is naturally present and prevalent in dynamical models, and is therefore significant theoretically. This point of view has guided us in the organizational aspects of this ASI. Our goals were twofold: We intended to achieve "cross fertilization" between mathematicians who were working in a diverse range of problem areas, but who all shared an interest in nonlinear and nonsmooth analysis. More importantly, it was our goal to expose a young international audience (mainly graduate students and recent Ph. D. 's) to these important subjects. In that regard, there were heavy pedagogical demands placed upon the twelve speakers of the ASI, in meeting the needs of such a gathering. The talks, while exposing current areas of research activity, were required to be as introductory and comprehensive as possible. It is our belief that these goals were achieved, and that these proceedings bear this out. Each of the twelve speakers presented a mini-course of four or five hours duration.
Hydrogels are a fascinating class of polymers which show an immense ability of swelling under the influence of temperature, pH value or concentrations of different species in aqueous solutions. The volume change can amount up to several hundred percent. This unique behaviour is already used in such applications like disposable diapers, contact lenses or drug-delivery systems. The ability to perform mechanical work has been shifted the technical interest more and more towards sensors and actuators exploiting the thermo-chemo-mechano-electrical coupling within hydrogels. The accuracy requirements for such devices are much more demanding than for previous applications. Therefore, a deep knowledge of both the material and the functional properties of hydrogel sensors and actuators is needed. The monograph describes state of the art and recent developments for these materials in sensor and actuator technology.
This book reports on advanced theories and cutting-edge applications in the field of soft computing. The individual chapters, written by leading researchers, are based on contributions presented during the 4th World Conference on Soft Computing, held May 25-27, 2014, in Berkeley. The book covers a wealth of key topics in soft computing, focusing on both fundamental aspects and applications. The former include fuzzy mathematics, type-2 fuzzy sets, evolutionary-based optimization, aggregation and neural networks, while the latter include soft computing in data analysis, image processing, decision-making, classification, series prediction, economics, control, and modeling. By providing readers with a timely, authoritative view on the field, and by discussing thought-provoking developments and challenges, the book will foster new research directions in the diverse areas of soft computing.
The book reports an extended version of the lectures given by distinguished scholars at the workshop "Fault diagnosis and fault tolerance for dynamic systems" held in conjunction with the 2002 IEEE International Symposium on Intelligent Control in Vancouver, Canada, from 27-30 October 2002. The book collects some of the most recent results in fault diagnosis and fault tolerant systems with particular emphasis on mechatronic systems. Each chapter focuses on either theoretical aspects or applications to different fields of interest in mechatronics such as industrial robotics, underwater vehicles, hydraulic systems, and flight control.
The book presents recent advances in nature-inspired computing, giving a special emphasis to control systems applications. It reviews different techniques used for simulating physical, chemical, biological or social phenomena at the purpose of designing robust, predictive and adaptive control strategies. The book is a collection of several contributions, covering either more general approaches in control systems, or methodologies for control tuning and adaptive controllers, as well as exciting applications of nature-inspired techniques in robotics. On one side, the book is expected to motivate readers with a background in conventional control systems to try out these powerful techniques inspired by nature. On the other side, the book provides advanced readers with a deeper understanding of the field and a broad spectrum of different methods and techniques. All in all, the book is an outstanding, practice-oriented reference guide to nature-inspired computing addressing graduate students, researchers and practitioners in the field of control engineering.
This volume collects contributions related to selected presentations from the 12th IFAC Workshop on Time Delay Systems, Ann Arbor, June 28-30, 2015. The included papers present novel techniques and new results of delayed dynamical systems. The topical spectrum covers control theory, numerical analysis, engineering and biological applications as well as experiments and case studies. The target audience primarily comprises research experts in the field of time delay systems, but the book may also be beneficial for graduate students alike.
Offers a unique multidisciplinary overview of how humans interact with soft objects and how multiple sensory signals are used to perceive material properties, with an emphasis on object deformability. The authors describe a range of setups that have been employed to study and exploit sensory signals involved in interactions with compliant objects as well as techniques to simulate and modulate softness - including a psychophysical perspective of the field. Multisensory Softness focuses on the cognitive mechanisms underlying the use of multiple sources of information in softness perception. Divided into three sections, the first Perceptual Softness deals with the sensory components and computational requirements of softness perception, the second Sensorimotor Softness looks at the motor components of the interaction with soft objects and the final part Artificial Softness focuses on the identification of exploitable guidelines to help replicate softness in artificial environments.
"Intelligent Control" considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller.The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of the fuzzy controller is then described and finally an evolutionary algorithm is applied to the neurally-tuned-fuzzy controller in which the sigmoidal function shape of the neural network is determined. The important issue of stability is addressed and the text demonstrates empirically that the developed controller was stable within the operating range. The text concludes with ideas for future research to show the reader the potential for further study in this area. "Intelligent Control "will be of interest to researchers from engineering and computer science backgrounds working in the intelligent and adaptive control."
There are more than 70 countries in the world that suffer from the presence of landmines. Annually, between 15,000 and 20,000 people are killed or injured by these mines so there is a pressing need for advances in technology to help to remove them. Anti-personnel Landmine Detection for Humanitarian Demining reports on state-of-the-art technologies developed during a Japanese National Research Project which ran from 2002 2007. The conventional, and often reliable, method of landmine detection is to use a metal detector to pick up small amounts of metal within the mine. Unfortunately, minefields are frequently strewn with small metal fragments which can camouflage landmines greatly hindering progress using this form of demining. The challenge, then, is to develop practical detection systems that can discriminate between anti-personnel (AP) landmines and randomly scattered innocent metal fragments. The results of research proposals from universities and industrial sources adopted by the Japan Science and Technology Agency are presented here. This book concentrates on various aspects of three main approaches to AP mine detection: enhancing and confirming the results of metal-detection scans using ground penetrating radar (GPR); using robot vehicles and manipulators to operate within minefields remotely; and methods of sensing the explosives within mines. Basic results are presented in the fields of GPR, nuclear quadrupole resonance, neutron thermal analysis and biosensors. The integration of these methods for workable robot operation is demonstrated. The project was carried out in conjunction with mine action centers in Croatia, Cambodia and Afghanistan and evaluation data from field trials of the technologies are also reported. The results presented by Professor Furuta and his colleagues will be most useful to anyone who is involved in the use or production of technical equipment associated with landmine removal. In addition, academics researching advances in this field and those working in remote sensing, mechatronics and robotics will find much to interest them and a co-ordinated body of work with which to expand their own studies.
This volume contains the proceedings of the Second International Workshop on Optimal Design and Control, held in Arlington, Virginia, 30 September-3 Octo ber, 1997. The First Workshop was held in Blacksburg, Virginia in 1994. The proceedings of that meeting also appeared in the Birkhauser series on Progress in Systems and Control Theory and may be obtained through Birkhauser. These workshops were sponsored by the Air Force Office of Scientific Re search through the Center for Optimal Design and Control (CODAC) at Vrrginia Tech. The meetings provided a forum for the exchange of new ideas and were designed to bring together diverse viewpoints and to highlight new applications. The primary goal of the workshops was to assess the current status of research and to analyze future directions in optimization based design and control. The present volume contains the technical papers presented at the Second Workshop. More than 65 participants from 6 countries attended the meeting and contributed to its success. It has long been recognized that many modern optimal design problems are best viewed as variational and optimal control problems. Indeed, the famous problem of determining the body of revolution that produces a minimum drag nose shape in hypersonic How was first proposed by Newton in 1686. Optimal control approaches to design can provide theoretical and computational insight into these problems. This volume contains a number of papers which deal with computational aspects of optimal control."
Swarming species such as flocks of birds or schools of fish exhibit fascinating collective behaviors during migration and predator avoidance. Similarly, engineered multi-agent dynamic systems such as groups of autonomous ground, underwater, or air vehicles ("vehicle swarms") exhibit sophisticated collective behaviors while maneuvering. In this book we show how to model and control a wide range of such multi-agent dynamic systems and analyze their collective behavior using both stability theoretic and simulation-based approaches. In particular, we investigate problems such as group aggregation, social foraging, formation control, swarm tracking, distributed agreement, and engineering optimization inspired by swarm behavior.
Control theory has applications to a number of areas in engineering and communication theory. This introductory text on the subject is fairly self-contained and aimed primarily at advanced mathematics and engineering students in various disciplines. The topics covered include realization problems, linear-quadratic optimal control, stability theory, stochastic modeling and recursive estimation algorithms in communications and control, and distributed system modeling. These topics have a wide range of applicability, and provide background for further study in the control and communications areas. In the early chapters the basics of linear control systems as well as the fundamentals of stochastic control are presented in a unique way so that the methods generalize to a useful class of distributed parameter and nonlinear system models. The control of distributed parameter systems (systems governed by PDEs) is based on the framework of linear quadratic Gaussian optimization problems. The approach here utilizes methods based on Wiener-Hopf integral equations. Additionally, the important notion of state space modeling of distributed systems is examined. Basic results due to Gohberg and Krein on convolution are given and many results are illustrated with some examples that carry throughout the text. The standard linear regulator problem is studied in both the continuous and discrete time cases, followed by a discussion of the (dual) filtering problems. Later chapters treat the stationary regulator and filtering problems with a Wiener-Hopf approach. This leads to spectral factorization problems and useful iterative algorithms that follow naturally from the methods employed. Theinterplay between time and frequency domain approaches is emphasized. |
You may like...
|