![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
Switched linear systems have a long history in the control literature but-along with hybrid systems more generally-they have enjoyed a particular growth in interest since the 1990s. The large amount of data and ideas thus generated have, until now, lacked a co-ordinating framework to focus them effectively on some of the fundamental issues such as the problems of robust stabilizing switching design, feedback stabilization and optimal switching. This deficiency is resolved by Switched Linear Systems which features: a [ nucleus of constructive design approaches based on canonical decomposition and forming a sound basis for the systematic treatment of secondary results; a [ theoretical exploration and logical association of several independent but pivotal concerns in control design as they pertain to switched linear systems: controllability and observability, feedback stabilization, optimization and periodic switching; a [ a reliable foundation for further theoretical research as well as design guidance for real life engineering applications through the integration of novel ideas, fresh insights and rigorous results. Primarily intended for researchers and engineers in the systems and control community, postgraduate students will also discover that this is perfect complementary reading especially for those studying intelligent, adaptive or robust control.
11 11/16 X 8 1/4 in
Stability is one of the most studied issues in the theory of time-delay systems, however the corresponding chapters of published volumes on time-delay systems do not include a comprehensive study of a counterpart ofclassical Lyapunov theory for linear delay free systems. The principal goal of the book is to fill this gap, and to provide readers with asystematic and exhaustivetreatment of the basic concepts of the Lyapunov-Krasovskii approach to the stability analysis of linear time-delay systems. "Time-Delay Systems: Lyapunov Functionals and Matrices "will be of great use and interest to researchers and graduate students in automatic control and applied mathematics as well as practicing engineers involved in control system design. "
This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying parameters in different sense of disturbances. The asynchronous switching problem, where there is time lag between the switching of the currently activated system mode and the controller/filter to be designed, is investigated in Chapter 6. The systems with various time delays under typical time-dependent switching signals are addressed in Chapter 7.
Mechatronics is a core subject for engineers, combining elements of
mechanical and electronic engineering into the development of
computer-controlled mechanical devices such as DVD players or
anti-lock braking systems. This book is the most comprehensive text
available for both mechanical and electrical engineering students
and will enable them to engage fully with all stages of mechatronic
system design. It offers broader and more integrated coverage than
other books in the field with practical examples, case studies and
exercises throughout and an Instructor's Manual. A further key
feature of the book is its integrated coverage of programming the
PIC microcontroller, and the use of MATLAB and Simulink programming
and modelling, along with code files for downloading from the
accompanying website.
This book presents cutting-edge results on stability analysis and control scheme designs for networked teleoperation systems. It highlights new research on commonly encountered nonlinear teleoperation systems, including the stability analysis of teleoperation systems with asymmetric time-varying delays, stability analysis of teleoperation systems with interval time delays, and so on. Moreover, the book presents several high-performance control scheme designs for teleoperation systems when the velocity is available and unavailable, and for systems with nonlinear input. The results presented here mark a substantial contribution to nonlinear teleoperation system theory, robotic control theory and networked control system theory. As such, the book will be of interest to university researchers, R&D engineers and graduate students in control theory and control engineering who wish to learn about the core principles, methods, algorithms, and applications of networked teleoperation systems, robotic systems and nonlinear control systems.
Cost Oriented Automation 2004 addresses a new integration environment that enables the evolution of collaborative e-design paradigm. This design paradigm aims at seamless and dynamic integration of distributed design objects and engineering tools over the internet.
Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: restructured and slightly extended section on superchargers, short subsection on rotational oscillations and their treatment on engine test-benches, complete section on modeling, detection, and control of engine knock, improved physical and chemical model for the three-way catalytic converter, new methodology for the design of an air-to-fuel ratio controller, short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects.
The book offers a comprehensive overview of controllability problems and minimum energy control for broad classes of dynamical systems, including linear, semilinear and nonlinear systems, which are important for modeling systems in automatic control, electrical engineering, mechanics and informatics. It develops the theory of controllability for both finite and infinite dimensional dynamical systems described by differential state equation, and studies in detail functional analysis and matrix algebra, which provide essential and effective tools for the new solutions of a number of important controllability problems. The theoretical results are illustrated by examples throughout the book. Primarily intended for academic researchers working in mathematical control theory, the self-contained text is easily accessible and particularly interesting for control engineering and applied mathematics graduates.
While domain decomposition methods have a long history dating back well over one hundred years, it is only during the last decade that they have become a major tool in numerical analysis of partial differential equations. This monograph emphasizes domain decomposition methods in the context of so-called virtual optimal control problems and treats optimal control problems for partial differential equations and their decompositions using an all-at-once approach.
This thesis presents a novel neuro-fuzzy modeling approach for grasp neuroprostheses. At first, it offers a detailed study of discomfort due to the application of Functional Electrical Stimulation to the upper limb. Then, it discusses briefly previous methods to model hand movements induced by FES with the purpose of introducing the new modeling approach based on intelligent systems. This approach is thoroughly described in the book, together with the proposed application to induce hand and finger movements by means of a surface FES system based on multi-field electrodes. The validation tests, carried out on both healthy and neurologically impaired subjects, demonstrate the efficacy of the proposed modeling method. All in all, the book proposes an innovative system based on fuzzy neural networks that is expected to improve the design and validation of advanced control systems for non-invasive grasp neuroprostheses.
Proportionala "integrala "derivative (PID) controllers are the most adopted controllers in industrial settings because of the advantageous cost/benefit ratio they are able to provide. Despite their long history and the know-how gained from years of experience, the availability of microprocessors and software tools and the increasing demand for higher product quality at reduced cost have stimulated researchers to devise new methodologies to improve their performance and make them easier to use. Practical PID Control covers important issues that arise when a PID controller is to be applied in practical cases. Its focus is on those functionalities that can provide significant improvements in performance in combination with a sound tuning of parameters. In particular, the choice of filter to make the controller proper, the use of a feedforward action and the selection of an anti-windup strategy are addressed. Further, the choice of the identification algorithm and of the model reduction technique are analysed in the context of model-based PID control. Widely adopted PID-based control architectures (ratio and cascade control) and performance assessment are also covered. For these topics, recent contributions are explained and compared with more standard approaches. A large number of simulation and experimental results are provided in order better to illustrate the different methodologies and to discuss their pros and cons. Practical PID Control is a helpful and instructive reference for researchers, graduate students and practitioners in process control.
This book demonstrates how to describe and analyze a system's behavior and extract the desired prediction and control algorithms from this analysis. A typical prediction is based on observing similar situations in the past, knowing the outcomes of these past situations, and expecting that the future outcome of the current situation will be similar to these past observed outcomes. In mathematical terms, similarity corresponds to symmetry, and similarity of outcomes to invariance. This book shows how symmetries can be used in all classes of algorithmic problems of sciences and engineering: from analysis to prediction to control. Applications cover chemistry, geosciences, intelligent control, neural networks, quantum physics, and thermal physics. Specifically, it is shown how the approach based on symmetry and similarity can be used in the analysis of real-life systems, in the algorithms of prediction, and in the algorithms of control.
This is a book for engineers that covers the hardware and software
aspects of high-reliability safety systems, safety instrumentation
and shutdown systems as well as risk assessment techniques and the
wider spectrum of industrial safety. Rather than another book on
the discipline of safety engineering, this is a thoroughly
practical guide to the procedures and technology of safety in
control and plant engineering. This highly practical book focuses
on efficiently implementing and assessing hazard studies, designing
and applying international safety practices and techniques, and
ensuring high reliability in the safety and emergency shutdown of
systems in your plant.
Integral processes with dead time are frequently encountered in the process industry; typical examples include supply chains, level control and batch distillation columns. Special attention must be paid to their control because they lack asymptotic stability (they are not self-regulating) and because of their delays. As a result, many techniques have been devised to cope with these hurdles both in the context of single-degree-of-freedom (proportional-integral-differential (PID)) and two-degree-of-freedom control schemes. Control of Integral Processes with Dead Time provides a unified and coherent review of the various approaches devised for the control of integral processes, addressing the problem from different standpoints. In particular, the book treats the following topics: how to tune a PID controller and assess its performance; how to design a two-degree-of-freedom control scheme in order to deal with both the set-point following and load disturbance rejection tasks; how to modify the basic Smith predictor control scheme in order to cope with the presence of an integrator in the process; and how to address the presence of large process dead times. The methods are presented sequentially, highlighting the evolution of their rationale and implementation and thus clearly characterising them from both academic and industrial perspectives. Control of Integral Processes with Dead Time will serve academic researchers in systems with dead time both as a reference and stimulus for new ideas for further work and will help industry-based control and process engineers to solve their control problems using the most suitable technique and achieving the best cost: benefit ratio."
The book addresses the control issues such as stability analysis, control synthesis and filter design of Markov jump systems with the above three types of TPs, and thus is mainly divided into three parts. Part I studies the Markov jump systems with partially unknown TPs. Different methodologies with different conservatism for the basic stability and stabilization problems are developed and compared. Then the problems of state estimation, the control of systems with time-varying delays, the case involved with both partially unknown TPs and uncertain TPs in a composite way are also tackled. Part II deals with the Markov jump systems with piecewise homogeneous TPs. Methodologies that can effectively handle control problems in the scenario are developed, including the one coping with the asynchronous switching phenomenon between the currently activated system mode and the controller/filter to be designed. Part III focuses on the Markov jump systems with memory TPs. The concept of -mean square stability is proposed such that the stability problem can be solved via a finite number of conditions. The systems involved with nonlinear dynamics (described via the Takagi-Sugeno fuzzy model) are also investigated. Numerical and practical examples are given to verify the effectiveness of the obtained theoretical results. Finally, some perspectives and future works are presented to conclude the book.
ILC has been a major control design methodology for twenty years; numerous algorithms have been developed to solve real-time control problems, from MEMS to batch reactors, characterised by repetitive control operations. Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The authors provide a hitherto lacking systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in the linear and nonlinear plants that pervade mechatronics and batch processes are addressed. In particular, the book discusses: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space. Real-time Iterative Learning Control will interest control engineers looking for examples of how this important control technique can be applied to a variety of real-life problems. With its systematic formulation and analysis of different system properties and performance and its exposition of open problems, academics and graduate students working in control will find it a useful reference to the current status of ILC.
This proceeding book consists of 10 topical areas of selected papers like: telecommunication, power systems, robotics, control system, renewable energy, power electronics, computer science and more. All selected papers represent interesting ideas and state of the art overview. Readers will find interesting papers of those areas about design and implement of dynamic positioning control system for USV, scheduling problems, motor control, backtracking search algorithm for distribution network and others. All selected papers represent interesting ideas and state of art overview. The proceeding book will also be a resource and material for practitioners who want to apply discussed problems to solve real-life problems in their challenging applications. It is also devoted to the studies of common and related subjects in intensive research fields of modern electric, electronic and related technologies. For these reasons, we believe that this proceeding book will be useful for scientists and engineers working in the above-mentioned fields of research applications.
A SCADA system gathers information, such as where a leak on a
pipeline has occurred, transfers the information back to a central
site, alerting the home station that the leak has occurred,
carrying out necessary analysis and control, such as determining if
the leak is critical, and displaying the information in a logical
and organized fashion. SCADA systems can be relatively simple, such
as one that monitors environmental conditions of a small office
building, or incredibly complex, such as a system that monitors all
the activity in a nuclear power plant or the activity of a
municipal water system.
Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive and truck engines is inherently related to unsteady conditions. In fact, only a very small portion of a vehicle's operating pattern is true steady-state, e. g. , when cruising on a motorway. Moreover, the most critical conditions encountered by industrial or marine engines are met during transients too. Unfortunately, the transient operation of turbocharged diesel engines has been associated with slow acceleration rate, hence poor driveability, and overshoot in particulate, gaseous and noise emissions. Despite the relatively large number of published papers, this very important subject has been treated in the past scarcely and only segmentally as regards reference books. Merely two chapters, one in the book Turbocharging the Internal Combustion Engine by N. Watson and M. S. Janota (McMillan Press, 1982) and another one written by D. E. Winterbone in the book The Thermodynamics and Gas Dynamics of Internal Combustion Engines, Vol. II edited by J. H. Horlock and D. E. Winterbone (Clarendon Press, 1986) are dedicated to transient operation. Both books, now out of print, were published a long time ago. Then, it seems reasonable to try to expand on these pioneering works, taking into account the recent technological advances and particularly the global concern about environmental pollution, which has intensified the research on transient (diesel) engine operation, typically through the Transient Cycles certification of new vehicles.
Embedded systems have been almost invisibly pervading our daily lives for several decades. They facilitate smooth operations in avionics, automotive electronics, or telecommunication. New problems arise by the increasing employment, interconnection, and communication of embedded systems in heterogeneous environments: How secure are these embedded systems against attacks or breakdowns? Therefore, how can embedded systems be designed to be more secure? How can embedded systems autonomically react to threats? Facing these questions, Sorin A. Huss is significantly involved in the exploration of design methodologies for secure embedded systems. This Festschrift is dedicated to him and his research on the occasion of his 60th birthday.
This book deals with a novel and practical advanced method for control of tandem cold metal rolling processes based on the emerging state-dependent Riccati equation technique. After a short history of tandem cold rolling, various types of cold rolling processes are described. A basic mathematical model of the process is discussed, and the diverse conventional control methods are compared. A detailed treatment of the theoretical and practical aspects of the state-dependent algebraic Riccati equation technique is given, with specific details of the new procedure described and results of simulations performed to verify the control model and overall system performance with the new controller coupled to the process model included. These results and data derived from actual operating mills are compared showing the improvements in performance using the new method. Material is included which shows how the new technique can be extended to the control of a broad range of large-scale complex nonlinear processes.
Manufacturing Systems Control Design details a matrix-based approach to the real-time application of control in discrete-event systems and flexible manufacturing systems (FMS) in particular. The "and/or" algebra in which matrix operations are carried out enables fast and efficient calculations with a minimum of computing power. In addition, the method uses standard task-sequencing and resource-requirements matrices which, if not in use already, can be easily derived with the help of this text. Matrix-based techniques are compared with Petri net and max-plus algebra ideas. Virtual modeling of complex physical systems has brought a new perspective to the investigation of phenomena in FMS. The software discussed in this book(and downloadable from the authorsa (TM) website at http: //flrcg.rasip.fer.hr/) supplies the reader with a graphical user interface that can do many things to make the design and control of FMS easier. The examples presented herein tackle the real-world problems faced by engineers trying to put into practice methods developed in academia, bringing together catholic experience of sensors, control systems, robotics, industrial automation, simulation, agile assembly and supply chains. Common concerns confronted include: a [ predictability: issues of control system modeling and analysis are addressed; a [ producibility: by looking at the design and synthesis of cellular workcells; a [ productivity: in terms of dynamic sensing and control. Covering all the steps from identification of operations and resources through modeling of the system and simulation of its dynamics in a virtual environment to the transformation of those models into real-worldalgorithms, this monograph is a sound practical basis for the design of controllers for manufacturing systems. It will interest both the academic and practising control or manufacturing engineer wishing to enhance the control of flexible systems and operations researchers looking at manufacturing performance. The end-of-chapter exercises provided and the easy-to-read introduction to the subject will also suit the final-year undergraduate and the beginning graduate in these disciplines.
Over the last thirty years an abundance of papers have been writ ten on adaptive dynamic control systems. Nevertheless, now it may be predicted with confidence that the adaptive mechanics, a new division, new line of inquiry in one of the violently developing fields of cybernetic mechanics, is emerging. The birth process falls far short of being com pleted. There appear new problems and methods of their solution in the framework of adaptive nonlinear dynamics. Therefore, the present work cannot be treated as a certain polished, brought-to-perfection school textbook. More likely, this is an attempt to show a number of well known scientific results in the parametric synthesis of nonlinear systems (this, strictly speaking, accounts for the availability of many reviews), as well as to bring to notice author's developments on this question undoubtedly modern and topical. The nonlinear, and practically La grangian, systems cover a wide class of classical objects in theoretical mechanics, and primarily solid-body (robotic, gyroscopic, rocket-cosmic, and other) systems. And what is rather important, they have a direct trend to practical application. To indicate this discussion, I should like to notice that it does not touch upon the questions concerned with the linear and stochastic con trolobjects. Investigated are only nonlinear deterministic systems being in the conditions when some system parameters are either unknown or beyond the reach of measurement, or they execute an unknown limited and fairly smooth drift in time." |
You may like...
Mathematical Modeling of Collective…
Giovanni Naldi, Lorenzo Pareschi, …
Hardcover
R2,891
Discovery Miles 28 910
Authenticity as Self-Transcendence - The…
Michael H. McCarthy
Hardcover
R3,968
Discovery Miles 39 680
What Are You Going to Do About It? - The…
Aldous 1894-1963 Huxley
Hardcover
R666
Discovery Miles 6 660
|