![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
This book combines semi-physical simulation technology with an Internet of Things (IOT) application system based on novel mathematical methods such as the Fisher matrix, artificial neural networks, thermodynamic analysis, support vector machines, and image processing algorithms. The dynamic testing and semi-physical verification of the theory and application were conducted for typical IOT systems such as RFID systems, Internet of Vehicles systems, and two-dimensional barcode recognition systems. The findings presented are of great scientific significance and have wide application potential for solving bottlenecks in the development of RFID technology and IOT engineering. The book is a valuable resource for postgraduate students in fields such as computer science and technology, control science and engineering, and information science. Moreover, it is a useful reference resource for researchers in IOT and RFID-related industries, logistics practitioners, and system integrators.
This book introduces readers to the navigation, guidance and control technologies involved in single-spacecraft, double-spacecraft, and multiple-spacecraft tasks in elliptical orbits. It comprehensively covers the key technologies of guidance, navigation and control (GNC) system design for spacecraft in elliptical orbits, including the orbit design, formation configuration design and maintenance, autonomous navigation technology and relative navigation technology, as well as autonomous rendezvous technology. The methods that this book introduces are very close to actual practical engineering applications and presented in an accessible style. The book can serve as reference teaching material for senior undergraduates and postgraduates with space navigation related majors, while also providing essential information and guidance for research personnel and engineering technical personnel engaged in the development of GNC systems for spacecraft.
This book introduces state-of-the-art verification techniques for real-time embedded systems, based on the inverse method for parametric timed automata. It reviews popular formalisms for the specification and verification of timed concurrent systems and, in particular, timed automata as well as several extensions such as timed automata equipped with stopwatches, linear hybrid automata and affine hybrid automata.The inverse method is introduced, and its benefits for guaranteeing robustness in real-time systems are shown. Then, it is shown how an iteration of the inverse method can solve the good parameters problem for parametric timed automata by computing a behavioral cartography of the system. Different extensions are proposed particularly for hybrid systems and applications to scheduling problems using timed automata with stopwatches. Various examples, both from the literature and industry, illustrate the techniques throughout the book.Various parametric verifications are performed, in particular of abstractions of a memory circuit sold by the chipset manufacturer ST-Microelectronics, as well as of the prospective flight control system of the next generation of spacecraft designed by ASTRIUM Space Transportation. Contents: 1. Parametric Timed Automata.2. The Inverse Method for Parametric Timed Automata.3. The Inverse Method in Practice: Application to Case Studies.4. Behavioral Cartography of Timed Automata.5. Parameter Synthesis for Hybrid Automata.6. Application to the Robustness Analysis of Scheduling Problems.7. Conclusion and Perspectives. About the Authors etienne Andre is Associate Professor in the Laboratoire d'Informatique de Paris Nord, in the University of Paris 13 (Sorbonne Paris Cite) in France. His current research interests focus on the verification of real-time systems.Romain Soulat is currently completing his PhD at the LSV laboratory at ENS-Cachan in France, focusing on the modeling and verification of hybrid temporal systems.
This book consists of peer-reviewed papers presented at the First International Conference on Intelligent Computing in Control and Communication (ICCC 2020). It comprises interesting topics in the field of applications of control engineering, communication and computing technology. As the current world is witnessing the use of various intelligent techniques for their independent problem solving, so this book may have a wide importance for all range of researchers and scholars. The book serves as a reference for researchers, professionals and students from across electrical, electronic and computer engineering disciplines.
This proceedings volume highlights a selection of papers presented at the 7th International Conference on High Performance Scientific Computing, which took place in Hanoi, Vietnam, during March 19-23, 2018. The conference has been organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology, the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover a broad, interdisciplinary spectrum of scientific computing and showcase recent advances in theory, methods, and practical applications. Subjects covered include numerical simulation, methods for optimization and control, machine learning, parallel computing and software development, as well as the applications of scientific computing in mechanical engineering, airspace engineering, environmental physics, decision making, hydrogeology, material science and electric circuits.
This contributed volume covers all relevant aspects of road vehicle automation including societal impacts, legal matters, and technology innovation from the perspectives of a multitude of public and private actors. It is based on an expert workshop organized by the Transportation Research Board at Stanford University in July 2013. The target audience primarily comprises academic researchers, but the book may also be of interest to practitioners and professionals. Higher levels of road vehicle automation are considered beneficial for road safety, energy efficiency, productivity, convenience and social inclusion. The necessary key technologies in the fields of object-recognition systems, data processing and infrastructure communication have been consistently developed over the recent years and are mostly available on the market today. However, there is still a need for substantial research and development, e.g. with interactive maps, data processing, functional safety and the fusion of different data sources. Driven by stakeholders in the IT industry, intensive efforts to accelerate the introduction of road vehicle automation are currently underway.
This volume is the first of the new series Advances in Dynamics and Delays. It offers the latest advances in the research of analyzing and controlling dynamical systems with delays, which arise in many real-world problems. The contributions in this series are a collection across various disciplines, encompassing engineering, physics, biology, and economics, and some are extensions of those presented at the IFAC (International Federation of Automatic Control) conferences since 2011. The series is categorized in five parts covering the main themes of the contributions: * Stability Analysis and Control Design * Networks and Graphs * Time Delay and Sampled-Data Systems * Computational and Software Tools * Applications This volume will become a good reference point for researchers and PhD students in the field of delay systems, and for those willing to learn more about the field, and it will also be a resource for control engineers, who will find innovative control methodologies for relevant applications, from both theory and numerical analysis perspectives.
This thesis provides a systematic and integral answer to an open problem concerning the universality of dynamic fuzzy controllers. It presents a number of novel ideas and approaches to various issues including universal function approximation, universal fuzzy models, universal fuzzy stabilization controllers, and universal fuzzy integral sliding mode controllers. The proposed control design criteria can be conveniently verified using the MATLAB toolbox. Moreover, the thesis provides a new, easy-to-use form of fuzzy variable structure control. Emphasis is given to the point that, in the context of deterministic/stochastic systems in general, the authors are in fact discussing non-affine nonlinear systems using a class of generalized T-S fuzzy models, which offer considerable potential in a wide range of applications.
This book presents a comprehensive report on the evolution of Fuzzy Logic since its formulation in Lotfi Zadeh's seminal paper on "fuzzy sets," published in 1965. In addition, it features a stimulating sampling from the broad field of research and development inspired by Zadeh's paper. The chapters, written by pioneers and prominent scholars in the field, show how fuzzy sets have been successfully applied to artificial intelligence, control theory, inference, and reasoning. The book also reports on theoretical issues; features recent applications of Fuzzy Logic in the fields of neural networks, clustering, data mining and software testing; and highlights an important paradigm shift caused by Fuzzy Logic in the area of uncertainty management. Conceived by the editors as an academic celebration of the fifty years' anniversary of the 1965 paper, this work is a must-have for students and researchers willing to get an inspiring picture of the potentialities, limitations, achievements and accomplishments of Fuzzy Logic-based systems.
This book collects papers from the 8th Conference on Non-Integer Order Calculus and Its Applications that have been held on September 20-21, 2016 in Zakopane, Poland. The preceding two conferences were held in Szczecin, Poland in 2015, and in Opole, Poland, in 2014. This conference provides a platform for academic exchange on the theory and application of fractional calculus between domestic and international universities, research institutes, corporate experts and scholars. The Proceedings of the 8th Conference on Non-Integer Order Calculus and Its Applications 2016 brings together rigorously reviewed contributions from leading international experts. The included papers cover novel various important aspects of mathematical foundations of fractional calculus, modeling and control of fractional systems as well as controllability, detectability, observability and stability problems for this systems.
Cyber-physical systems (CPS) are characterized as a combination of physical (physical plant, process, network) and cyber (software, algorithm, computation) components whose operations are monitored, controlled, coordinated, and integrated by a computing and communicating core. The interaction between both physical and cyber components requires tools allowing analyzing and modeling both the discrete and continuous dynamics. Therefore, many CPS can be modeled as hybrid dynamic systems in order to take into account both discrete and continuous behaviors as well as the interactions between them. Guaranteeing the security and safety of CPS is a challenging task because of the inherent interconnected and heterogeneous combination of behaviors (cyber/physical, discrete/continuous) in these systems. This book presents recent and advanced approaches and tech-niques that address the complex problem of analyzing the diagnosability property of cyber physical systems and ensuring their security and safety against faults and attacks. The CPS are modeled as hybrid dynamic systems using different model-based and data-driven approaches in different application domains (electric transmission networks, wireless communication networks, intrusions in industrial control systems, intrusions in production systems, wind farms etc.). These approaches handle the problem of ensuring the security of CPS in presence of attacks and verifying their diagnosability in presence of different kinds of uncertainty (uncertainty related to the event occurrences, to their order of occurrence, to their value etc.).
Guaranteeing a high system performance over a wide operating range
is an important issue surrounding the design of automatic control
systems with successively increasing complexity. As a key
technology in the search for a solution, advanced fault detection
and identification (FDI) is receiving considerable attention. This
book introduces basic model-based FDI schemes, advanced analysis
and design algorithms, and mathematical and control-theoretic
tools.
This book addresses a broad range of topics concerning machine learning, big data, the Internet of things (IoT), and security in the IoT. Its goal is to bring together several innovative studies on these areas, in order to help researchers, engineers, and designers in several interdisciplinary domains pursue related applications. It presents an overview of the various algorithms used, focusing on the advantages and disadvantages of each in the fields of machine learning and big data. It also covers next-generation computing paradigms that are expected to support wireless networking with high data transfer rates and autonomous decision-making capabilities. In turn, the book discusses IoT applications (e.g. healthcare applications) that generate a huge amount of sensor data and imaging data that must be handled correctly for further processing. In the traditional IoT ecosystem, cloud computing offers a solution for the efficient management of huge amounts of data, thanks to its ability to access shared resources and provide a common infrastructure in a ubiquitous manner. Though these new technologies are invaluable, they also reveal serious IoT security challenges. IoT applications are vulnerable to various types of attack such as eavesdropping, spoofing and false data injection, the man-in-the-middle attack, replay attack, denial-of-service attack, jamming attack, flooding attack, etc. These and other security issues in the Internet of things are explored in detail. In addition to highlighting outstanding research and recent advances from around the globe, the book reports on current challenges and future directions in the IoT. Accordingly, it offers engineers, professionals, researchers, and designers an applied-oriented resource to support them in a broad range of interdisciplinary areas.
This book explores the outcomes on flow control research activities carried out within the framework of two EU-funded projects focused on training-through-research of Marie Sklodowska-Curie doctoral students. The main goal of the projects described in this monograph is to assess the potential of the passive- and active-flow control methods for reduction of fuel consumption by a helicopter. The research scope encompasses the fields of structural dynamics, fluid flow dynamics, and actuators with control. Research featured in this volume demonstrates an experimental and numerical approach with a strong emphasis on the verification and validation of numerical models. The book is ideal for engineers, students, and researchers interested in the multidisciplinary field of flow control.
This book focuses on unhealthy cyber-physical systems. Consisting of 14 chapters, it discusses recognizing the beginning of the fault, diagnosing the appearance of the fault, and stopping the system or switching to a special control mode known as fault-tolerant control. Each chapter includes the background, motivation, quantitative development (equations), and case studies/illustration/tutorial (simulations, experiences, curves, tables, etc.). Readers can easily tailor the techniques presented to accommodate their ad hoc applications.
This edited monograph contains research contributions on a wide range of topics such as stochastic control systems, adaptive control, sliding mode control and parameter identification methods. The book also covers applications of robust and adaptice control to chemical and biotechnological systems. This collection of papers commemorates the 70th birthday of Dr. Alexander S. Poznyak.
Whereas power systems have traditionally been designed with a focus on protecting them from routine component failures and atypical user demand, we now also confront the fact that deliberate attack intended to cause maximum disruption is a real possibility. In response to this changing environment, new concepts and tools have emerged that address many of the issues facing power system operation today. This book is aimed at introducing these ideas to practicing power systems engineers, control systems engineers interested in power systems, and graduate students in these areas. The ideas are examined with an emphasis on how they can be applied to improve our understanding of power system behavior and help design better control systems. The book is supplemented by a Mathematica package enabling readers to work out nontrivial examples and problems. Also included is a set of Mathematica tutorial notebooks providing detailed solutions of the worked examples in the text. In addition to Mathematica, simulations are carried out using Simulink with Stateflow.
This book focuses on the design of decentralized optimization methods applied to charging strategies for large-scale PEVs in electrical power systems. It studies several classes of charging coordination problems in large-scale PEVs by considering the distinct characteristics of PEV populations and electrical power systems, and subsequently designs decentralized methods based on distinct optimization schemes - such as non-cooperative games, mean-field games, and auction games - to achieve optimal/nearly optimal charging strategies. In closing, several performance aspects of the proposed algorithms, such as their convergence, computational complexity and optimality etc., are rigorously verified and demonstrated in numerical simulations. Given its scope, the book will benefit researchers, engineers, and graduate students in the fields of optimization, game theory, auction games, electrical power systems, etc., and help them design decentralized methods to implement optimal charging strategies in large-scale PEVs.
This book presents advanced control techniques that use neural networks to deal with grid disturbances in the context renewable energy sources, and to enhance low-voltage ride-through capacity, which is a vital in terms of ensuring that the integration of distributed energy resources into the electrical power network. It presents modern control algorithms based on neural identification for different renewable energy sources, such as wind power, which uses doubly-fed induction generators, solar power, and battery banks for storage. It then discusses the use of the proposed controllers to track doubly-fed induction generator dynamics references: DC voltage, grid power factor, and stator active and reactive power, and the use of simulations to validate their performance. Further, it addresses methods of testing low-voltage ride-through capacity enhancement in the presence of grid disturbances, as well as the experimental validation of the controllers under both normal and abnormal grid conditions. The book then describes how the proposed control schemes are extended to control a grid-connected microgrid, and the use of an IEEE 9-bus system to evaluate their performance and response in the presence of grid disturbances. Lastly, it examines the real-time simulation of the entire system under normal and abnormal conditions using an Opal-RT simulator.
This book presents a novel framework, known as Active Robust Optimization, which provides the tools for evaluating, comparing and optimizing changeable products. Since any product that can change its configuration during normal operation may be considered a "changeable product," the framework is widely applicable. Further, the methodology enables designers to use adaptability to deal with uncertainties and so avoid over-conservative designs. Offering a comprehensive overview of the framework, including its unique features, such as its ability to optimally respond to uncertain situations, the book also defines a new class of optimization problem and examines the effects of changes in various parameters on their solution. Lastly, it discusses innovative approaches for solving the problem and demonstrates these with two examples from different fields in engineering design: optimization of an optical table and optimization of a gearbox.
Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems' inputs, states measurements, and restrictions on the interconnection topology between the aerial vehicles in the team are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers and industrial engineers from robotics, control engineering and aerospace communities. It also serves as a complementary reading for graduate students involved in research related to flying robotics, aerospace, control of under-actuated systems, and nonlinear control theory
This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.
This book presents the proceedings of the International Science and Technology Conference "FarEastCon 2019," which took place on October 1-4, 2019, in Vladivostok, Russian Federation. The conference provided a platform for gathering expert opinions on projects and initiatives aimed at the implementation of far-sighted scientific research and development, and allowed current theoretical and practical advances to be shared with the broader research community. Featuring selected papers from the conference, this book will be of interest to experts in various fields whose work involves developing innovative solutions and increasing the efficiency of economic activities.
Increasing performance demands in integrated circuits, together with limited energy budgets, force IC designers to find new ways of saving power. One innovative way is the presented adaptive voltage scaling scheme, which tunes the supply voltage according to the present process, voltage and temperature variations as well as aging. The voltage is adapted "on the fly" by means of in-situ delay monitors to exploit unused timing margin, produced by state-of-the-art worst-case designs. This book discusses the design of the enhanced in-situ delay monitors and the implementation of the complete control-loop comprising the monitors, a control-logic and an on-chip voltage regulator. An analytical Markov-based model of the control-loop is derived to analyze its robustness and stability. Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits provides an in-depth assessment of the proposed voltage scaling scheme when applied to an arithmetic and an image processing circuit. This book is written for engineers interested in adaptive techniques for low-power CMOS circuits.
Mismatch or best match? This book demonstrates that best matching of individual entities to each other is essential to ensure smooth conduct and successful competitiveness in any distributed system, natural and artificial. Interactions must be optimized through best matching in planning and scheduling, enterprise network design, transportation and construction planning, recruitment, problem solving, selective assembly, team formation, sensor network design, and more. Fundamentals of best matching in distributed and collaborative systems are explained by providing: Methodical analysis of various multidimensional best matching processes Comprehensive taxonomy, comparing different best matching problems and processes Systematic identification of systems' hierarchy, nature of interactions, and distribution of decision-making and control functions Practical formulation of solutions based on a library of best matching algorithms and protocols, ready for direct applications and apps development. Designed for both academics and practitioners, oriented to systems engineers and applied operations researchers, diverse types of best matching processes are explained in production, manufacturing, business and service, based on a new reference model developed at Purdue University PRISM Center: "The PRISM Taxonomy of Best Matching". The book concludes with major challenges and guidelines for future basic and applied research in the area of best matching. |
![]() ![]() You may like...
Trends in Industrial Engineering…
Jorge Luis Garcia-Alcaraz, Arturo Realyvasquez Vargas, …
Hardcover
R4,468
Discovery Miles 44 680
Lied Vir Sarah - Lesse Van My Ma
Jonathan Jansen, Naomi Jansen
Hardcover
![]()
Modern Dynamic Reliability Analysis for…
Anatoly Lisnianski, Ilia Frenkel, …
Hardcover
R5,089
Discovery Miles 50 890
Responsive Open Learning Environments…
Sylvana Kroop, Alexander Mikroyannidis, …
Hardcover
R1,678
Discovery Miles 16 780
Attractor Dimension Estimates for…
Nikolay Kuznetsov, Volker Reitmann
Hardcover
R6,335
Discovery Miles 63 350
Information and Communication…
Harriet Taylor, Pieter Hogenbirk
Hardcover
R5,771
Discovery Miles 57 710
Handbook of Research on Innovative…
Phu Vu, Scott Fredrickson, …
Hardcover
R7,790
Discovery Miles 77 900
|