![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
Supervision, condition-monitoring, fault detection, fault diagnosis and fault management play an increasing role for technical processes and vehicles in order to improve reliability, availability, maintenance and lifetime. For safety-related processes fault-tolerant systems with redundancy are required in order to reach comprehensive system integrity. This book is a sequel of the book Fault-Diagnosis Systems published in 2006, where the basic methods were described. After a short introduction into fault-detection and fault-diagnosis methods the book shows how these methods can be applied for a selection of 20 real technical components and processes as examples, such as: Electrical drives (DC, AC) Electrical actuators Fluidic actuators (hydraulic, pneumatic) Centrifugal and reciprocating pumps Pipelines (leak detection) Industrial robots Machine tools (main and feed drive, drilling, milling, grinding) Heat exchangers Also realized fault-tolerant systems for electrical drives, actuators and sensors are presented. The book describes why and how the various signal-model-based and process-model-based methods were applied and which experimental results could be achieved. In several cases a combination of different methods was most successful. The book is dedicated to graduate students of electrical, mechanical, chemical engineering and computer science and for engineers.
"Modeling, Control and Coordination of Helicopter Systems" provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems, providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved.
The theory of linear functional observers, which is the subject of this book, is increasingly becoming a popular researched topic because of the many advantages it presents in state observation and control system design. This book presents recent information on the current state of the art research in this field. This book will serve as a useful reference to researchers in this area of research to understand the fundamental concepts relevant to the theory of functional observers and to gather most recent advancements in the field. This book is useful to academics and postgraduate students researching into the theory of linear functional observers. This book can also be useful for specialized final year undergraduate courses in control systems engineering and applied mathematics with a research focus.
In this book for the first time two scientific fields - consensus
formation and synchronization of communications - are presented
together and examined through their interrelational aspects, of
rapidly growing importance. Both fields have indeed attracted
enormous research interest especially in relation to complex
networks.
This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants: they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge. Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts of the text are devoted to design methods that assume only a very limited knowledge about the plant. Other parts detail methods that rely on knowledge of the dominant plant structure. These methods are more plant specific, but allow the improvement of performance. "Adaptive Control of Solar Energy Collector Systems" demonstrates the dynamics of solar fields to be rich enough to present a challenge to the control designer while, at the same time, simple enough to allow analytic work to be done, providing case studies on dynamics and nonlinear control design in a simple and revealing, but nontrivial way. The control approaches treated in this monograph can be generalized to apply to other plants modelled by hyperbolic partial differential equations, especially process plants in which transport phenomena occur, plants like dryers, steam super-heaters and even highway traffic. An important example, used repeatedly throughout the text, is a distributed-collector solar field installed at Plataforma Solar de Almeria, located in southern Spain. The control algorithms laid out in the text are illustrated with experimental results generated from this plant. Although the primary focus of this monograph is solar energy collector, the range of other systems which can benefit from the methods described will make it of interest to control engineers working in many industries as well as to academic control researchers interested in adaptive control and its applications.
This book presents a survey of past and recent developments on
human walking in virtual environments with an emphasis on human
self-motion perception, the multisensory nature of experiences of
walking, conceptual design approaches, current technologies, and
applications. The use of Virtual Reality and movement simulation
systems is becoming increasingly popular and more accessible to a
wide variety of research fields and applications. While, in the
past, simulation technologies have focused on developing realistic,
interactive visual environments, it is becoming increasingly
obvious that our everyday interactions are highly multisensory.
Therefore, investigators are beginning to understand the critical
importance of developing and validating locomotor interfaces that
can allow for realistic, natural behaviours. The book aims to
present an overview of what is currently understood about human
perception and performance when moving in virtual environments and
to situate it relative to the broader scientific and engineering
literature on human locomotion and locomotion interfaces. The
contents include scientific background and recent empirical
findings related to biomechanics, self-motion perception, and
physical interactions. The book also discusses conceptual
approaches to multimodal sensing, display systems, and interaction
for walking in real and virtual environments. Finally, it will
present current and emerging applications in areas such as gait and
posture rehabilitation, gaming, sports, and architectural design.
This book contains the papers included in the proceedings of the 1st International Workshop on High-speed and Intercity Railways (IWHIR 2011) held in Shenzhen and Hong Kong, China from July 19 to July 22, 2011, which is organized by The Hong Kong Polytechnic University, in collaboration with Southwest Jiaotong University, Beijing Jiaotong University, Dalian Jiaotong University, China Engineering Consultants, Inc., Zhejiang University, and Tsinghua University. Continuing the great initiatives and momentums of the rapid development in high-speed and intercity railways worldwide in recent years, IWHIR 2011 aims at providing a platform for academic scholars and practicing engineers to share knowledge and experience, to promote collaboration, and to strengthen R&D activities related to railway engineering. Engineers, scientists, professors, and students from universities, research institutes, and related industrial companies have been cordially invited to participate in the workshop. These papers have covered a wide range of issues concerning high-speed and intercity railways in the theoretical, numerical, and experimental work pertaining to high-speed and intercity railways. Showcasing diversity and quality, these papers report the state-of-the-art and point to future directions of research and development in this exciting area.
"AutomaticControl of Atmospheric and Space Flight Vehicles" is perhaps the firstbook on the market to present a unified and straightforwardstudyof the design and analysis of automatic control systems for both atmospheric and space flight vehicles.Covering basic control theory and design concepts, it is meantas a textbook for senior undergraduate and graduate students in moderncourses on flight control systems. In addition to the basics of flight control, this book covers a number ofupper-level topicsand will therefore be of interest not only to advanced students, but also toresearchers and practitioners in aeronautical engineering, applied mathematics, and systems/control theory."
This volume is an outgrowth of the workshop Applications of Advanced Control Theory to Robotics and Automation, organized in honor of the 70th birthdays of Petar V. Kokotovic and Salvatore Nicosia. Both Petar and Turi have carried out distinguished work in the control community, and have long been recognized as mentors as well as experts and pioneers in the field of automatic control, covering many topics in control theory and several different applications. The variety of their research is reflected in this book, which includes contributions ranging from mathematics to laboratory experiments.Main topics covered include: * Observer design for time-delay systems, nonlinear systems, and identification for different classes of systems* Lyapunov tools for linear differential inclusions, control of constrained systems, and finite-time stability concepts * New studies of robot manipulators, parameter identification, and different control problems for mobile robots* Applications of modern control techniques to port-controlled Hamiltonian systems, different classes of vehicles, and web handling systems* Applications of the max-plus algebra to system-order reduction; optimal machine schedu used by many of the authors will make this book suitable for experts, as well as young researchers who seek a more intuitive understanding of these relevant topics in the field
This book provides a conceptual and computational framework to study how the nervous system exploits the anatomical properties of limbs to produce mechanical function. The study of the neural control of limbs has historically emphasized the use of optimization to find solutions to the muscle redundancy problem. That is, how does the nervous system select a specific muscle coordination pattern when the many muscles of a limb allow for multiple solutions? I revisit this problem from the emerging perspective of neuromechanics that emphasizes finding and implementing families of feasible solutions, instead of a single and unique optimal solution. Those families of feasible solutions emerge naturally from the interactions among the feasible neural commands, anatomy of the limb, and constraints of the task. Such alternative perspective to the neural control of limb function is not only biologically plausible, but sheds light on the most central tenets and debates in the fields of neural control, robotics, rehabilitation, and brain-body co-evolutionary adaptations. This perspective developed from courses I taught to engineers and life scientists at Cornell University and the University of Southern California, and is made possible by combining fundamental concepts from mechanics, anatomy, mathematics, robotics and neuroscience with advances in the field of computational geometry. Fundamentals of Neuromechanics is intended for neuroscientists, roboticists, engineers, physicians, evolutionary biologists, athletes, and physical and occupational therapists seeking to advance their understanding of neuromechanics. Therefore, the tone is decidedly pedagogical, engaging, integrative, and practical to make it accessible to people coming from a broad spectrum of disciplines. I attempt to tread the line between making the mathematical exposition accessible to life scientists, and convey the wonder and complexity of neuroscience to engineers and computational scientists. While no one approach can hope to definitively resolve the important questions in these related fields, I hope to provide you with the fundamental background and tools to allow you to contribute to the emerging field of neuromechanics.
Dry Clutch Control for Automated Manual Transmission Vehiclesanalyses the control of a part of the powertrain which has a key role in ride comfort during standing-start and gear-shifting manoeuvres. The mechanical conception of the various elements in the driveline has long since been optimised so this book takes a more holistic system-oriented view of the problem featuring: a comprehensive description of the driveline elements and their operation paying particular attention to the clutch, a nonlinear model of the driveline for simulation and a simplified model for control design, with a standing-start driver automaton for closed loop simulation, a detailed analysis of the engagement operation and the related comfort criteria, different control schemes aiming at meeting these criteria, friction coefficient and unknown input clutch torque observers, practical implementation issues and solutions based on experience of implementing optimal engagement strategies on two Renault prototypes.
This constitutes the Proceedings of the 22nd IFIP TC7 Conference held in July 2005, in Torino, Italy, and dedicated to Camillo Possio, on the 60th anniversary of his death during the last air raid over Torino. The papers in this volume concern primarily stochastic and distributed systems, their control/optimization, and inverse problems. These proceedings also explore applications of optimization techniques and computational methods in fields such as medicine, biology and economics.
Hydraulic Servo-systems details the basic concepts of many recent developments of nonlinear identification and nonlinear control and their application to hydraulic servo-systems: developments such as feedback linearisation and fuzzy control. It also reviews the principles, benefits and limitations associated with standard control design approaches such as linear state feedback control, feedforward control and compensation for static nonlinearities, because of their continued practical importance. Featuring: theoretical (physically based) modelling of hydraulic servo-systems; experimental modelling (system identification); control strategies for hydraulic servo-systems; case studies and experimental results. Appendices outline the most important fundamentals of (nonlinear) differential geometry and fuzzy control. The book is very application-oriented and provides the reader with detailed working procedures and hints for implementation routines and software tools. It will interest scientists and qualified engineers involved in the analysis and design of hydraulic control systems, especially in advanced hydraulic industries, the aeronautical and space and automotive industries.
This book constitutes the refereed proceedings of the 6th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2012, held in Chamonix, France, in February 2012. The 15 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized into the following topical sections: micro processes and systems; handling and manipulation in assembly; tolerance management and error compensation methods; metrology and quality control; intelligent control of assembly systems; and process selection and modelling techniques.
This book is focused on the recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The Contributions include: * Morphological Image Analysis for Computer Vision Applications. * Methods for Detecting of Structural Changes in Computer Vision Systems. * Hierarchical Adaptive KL-based Transform: Algorithms and Applications. * Automatic Estimation for Parameters of Image Projective Transforms Based on Object-invariant Cores. * A Way of Energy Analysis for Image and Video Sequence Processing. * Optimal Measurement of Visual Motion Across Spatial and Temporal Scales. * Scene Analysis Using Morphological Mathematics and Fuzzy Logic. * Digital Video Stabilization in Static and Dynamic Scenes. * Implementation of Hadamard Matrices for Image Processing. * A Generalized Criterion of Efficiency for Telecommunication Systems. The book is directed to PhD students, professors, researchers and software developers working in the areas of digital video processing and computer vision technologies.
This unified volume is a collection of invited articles on topics presented at the Symposium on Systems, Control, and Networks, held in Berkeley June 5-7, 2005, in honor of Pravin Varaiya on his 65th birthday. Varaiya is an eminent faculty member of the University of California at Berkeley, widely known for his seminal contributions in areas as diverse as stochastic systems, nonlinear and hybrid systems, distributed systems, communication networks, transportation systems, power networks, economics, optimization, and systems education.The chapters include recent results and surveys by leading experts on topics that reflect many of the research and teaching interests of Varaiya, including: hybrid systems and applications - communication, wireless and sensor networks - transportation systems - stochastic systems - systems education Advances in Systems, Control, and Networks will serve as an excellent resource for practicing and research engineers, applied mathematicians, and graduate students working in such areas as communication networks, sensor networks, transportation systems, control theory, hybrid systems, and applications. Contributors: J.S. Baras, V.S. Borkar, M.H.A. Davis, A. Hwang, T. Jiang, R. Johari, A. Kotsialos, A.B. Kurzhanski, E.A. Lee, X. Liu, H.S. Mahmassani, D. Manjunath, B. Mishra, L. Munoz, M. Papageorgiou, C. Piazza, S.E. Shladover, D.M. Stipanovic, T.M. Stoenescu, X. Sun, D. Teneketzis, C.J. Tomlin, J.N. Tsitsiklis, J. Walrand, X. Zhou
Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications."
A successful cyber-physical system, a complex interweaving of hardware and software with some part of the physical environment, depends on proper identification of the, often pre-existing, physical element. A bespoke "cyber" part of the system may then be designed from scratch. Optimal Mobile Sensing and Actuation Strategies in Cyber-physical Systems focuses on distributed-parameter systems the dynamics of which can be modelled with partial differential equations. These are very challenging to observe, their states and inputs being distributed throughout a spatial domain. Consequently, systematic approaches to the optimization of sensor location have to be devised for parameter estimation. The text begins by reviewing the field of cyber-physical systems and introducing background notions of distributed parameter systems and optimal observation theory. New research problems are then defined within this framework. Two important problems considered are optimal mobile sensor trajectory planning and the accuracy effects and allocation of remote sensors. These are followed up with a solution to the problem of optimal robust estimation. Actuation policies are then introduced into the framework with the purpose of improving estimation and optimizing the trajectories of both sensors and actuators simultaneously. The large number of illustrations within the text will assist the reader to visualize the application of the methods proposed. A group of similar examples are used throughout the book to help the reader assimilate the material more easily. The monograph concentrates on the use of methods for which a cyber-physical-systems infrastructure is required. The methods are computationally heavy and require mobile sensors and actuators with communications abilities. Application examples cover fields from environmental science to national security so that readers are encouraged to link the ideas of cyber-physical systems with their own research.
This book contains the papers included in the proceedings of the 1st International Workshop on High-speed and Intercity Railways (IWHIR 2011) held in Shenzhen and Hong Kong, China from July 19 to July 22, 2011, which is organized by The Hong Kong Polytechnic University, in collaboration with Southwest Jiaotong University, Beijing Jiaotong University, Dalian Jiaotong University, China Engineering Consultants, Inc., Zhejiang University, and Tsinghua University. Continuing the great initiatives and momentums of the rapid development in high-speed and intercity railways worldwide in recent years, IWHIR 2011 aims at providing a platform for academic scholars and practicing engineers to share knowledge and experience, to promote collaboration, and to strengthen R&D activities related to railway engineering. Engineers, scientists, professors, and students from universities, research institutes, and related industrial companies have been cordially invited to participate in the workshop. These papers have covered a wide range of issues concerning high-speed and intercity railways in the theoretical, numerical, and experimental work pertaining to high-speed and intercity railways. Showcasing diversity and quality, these papers report the state-of-the-art and point to future directions of research and development in this exciting area.
This book includes 15 programming and constructional projects, and
covers the range of AVR chips currently available, including the
recent Tiny AVR. No prior experience with microcontrollers is
assumed.
This book introduces physical effects and fundamentals of piezoelectric sensors and actuators. It gives a comprehensive overview of piezoelectric materials such as quartz crystals and polycrystalline ceramic materials. Different modeling approaches and methods to precisely predict the behavior of piezoelectric devices are described. Furthermore, a simulation-based approach is detailed which enables the reliable characterization of sensor and actuator materials. One focus of the book lies on piezoelectric ultrasonic transducers. An optical approach is presented that allows the quantitative determination of the resulting sound fields. The book also deals with various applications of piezoelectric sensors and actuators. In particular, the studied application areas are * process measurement technology, * ultrasonic imaging, * piezoelectric positioning systems and * piezoelectric motors. The book addresses students, academic as well as industrial reseachers and development engineers who are concerned with piezoelectric sensors and actuators.
There are many methods of stable controller design for nonlinear
systems. In seeking to go beyond the minimum requirement of
stability, Adaptive Dynamic Programming in Discrete Time approaches
the challenging topic of optimal control for nonlinear systems
using the tools of adaptive dynamic programming (ADP). The range of
systems treated is extensive; affine, switched, singularly
perturbed and time-delay nonlinear systems are discussed as are the
uses of neural networks and techniques of value and policy
iteration. The text features three main aspects of ADP in which the
methods proposed for stabilization and for tracking and games
benefit from the incorporation of optimal control methods:
During the past decade model predictive control (MPC), also
referred to as receding horizon control or moving horizon control,
has become the preferred control strategy for quite a number of
industrial processes. There have been many significant advances in
this area over the past years, one of the most important ones being
its extension to nonlinear systems. This book gives an up-to-date
assessment of the current state of the art in the new field of
nonlinear model predictive control (NMPC). The main topic areas
that appear to be of central importance for NMPC are covered,
namely receding horizon control theory, modeling for NMPC,
computational aspects of on-line optimization and application
issues. The book consists of selected papers presented at the
International Symposium on Nonlinear Model Predictive Control -
Assessment and Future Directions, which took place from June 3 to
5, 1998, in Ascona, Switzerland.
This book presents the synthesis and analysis of fuzzy controllers and its application to a class of mechanical systems. It mainly focuses on the use of type-2 fuzzy controllers to account for disturbances known as hard or nonsmooth nonlinearities. The book, which summarizes the authors' research on type-2 fuzzy logic and control of mechanical systems, presents models, simulation and experiments towards the control of servomotors with dead-zone and Coulomb friction, and the control of both wheeled mobile robots and a biped robot. Closed-loop systems are analyzed in the framework of smooth and nonsmooth Lyapunov functions.
The 6th International Asia Conference on Industrial Engineering and Management Innovation is sponsored by the Chinese Industrial Engineering Institution and organized by Tianjin University. The conference aims to share and disseminate information on the most recent and relevant researches, theories and practices in industrial and system engineering to promote their development and application in university and enterprises. |
You may like...
Rapid Automation - Concepts…
Information Reso Management Association
Hardcover
R9,395
Discovery Miles 93 950
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Closing The Gap - The Fourth Industrial…
Tshilidzi Marwala
Paperback
|