![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
This edited volume contains sixteen research articles and presents recent and pressing issues in stochastic processes, control theory, differential games, optimization, and their applications in finance, manufacturing, queueing networks, and climate control. One of the salient features is that the book is highly multi-disciplinary. It assembles experts from the fields of operations research, control theory and optimization, stochastic analysis, and financial engineering to review and substantially update the recent progress in these fields. Another distinct characteristic of the book is that all papers are motivated by applications in which optimization, control, and stochastics are inseparable. The book will be a timely addition to the literature and will be of interest to people working in the aforementioned fields. Most importantly, this volume is dedicated to Professor Suresh Sethi on the occasion of his 60th birthday. In view of his fundamental contributions, his distinguished career, his substantial achievements, his influence on the areas of control theory and applications, operations research, and management science, and his dedication to the scientific community, a number of leading experts in the fields of optimization, control, and operation management, have contributed to this volume in honor of him.
Increasing demands on the output performance, exhaust emissions, and fuel consumption necessitate the development of a new generation of automotive engine functionality. This monograph is written by a long year developmental automotive engineer and offers a wide coverage of automotive engine control and estimation problems and its solutions. It addresses idle speed control, cylinder flow estimation, engine torque and friction estimation, engine misfire and CAM profile switching diagnostics, as well as engine knock detection. The book provides a wide and well structured collection of tools and new techniques useful for automotive engine control and estimation problems such as input estimation, composite adaptation, threshold detection adaptation, real-time algorithms, as well as the very important statistical techniques. It demonstrates the statistical detection of engine problems such as misfire or knock events and how it can be used to build a new generation of robust engine functionality. This book will be useful for practising automotive engineers, black belts working in the automotive industry as well as for lecturers and students since it provides a wide coverage of engine control and estimation problems, detailed and well structured descriptions of useful techniques in automotive applications and future trends and challenges in engine functionality.
The book largely represents the extended version of select papers from the Inter- tional Conference on Intelligent Unmanned System ICIUS 2007 which was jointly organized by the Center for Unmanned System Studies at Institut Teknologi Bandung, Artificial Muscle Research Center at Konkuk University and Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astrona- ics. The joint-event was the 3rd conference extending from International Conference on Emerging System Technology (ICEST) in 2005 and International Conference on Technology Fusion (ICTF) in 2006 both conducted in Seoul. ICIUS 2007 was focused on both theory and application primarily covering the topics on robotics, autonomous vehicles and intelligent unmanned technologies. The conference was arranged into three parallel symposia with the following scope of topics: Unmanned Systems: Micro air vehicle, Underwater vehicle, Micro-satellite, - manned aerial vehicle, Multi-agent systems, Autonomous ground vehicle, Blimp, Swarm intelligence, learning and control Robotics and Biomimetics: Artificial muscle actuators, Smart sensors, Design and applications of MEMS/NEMS system, Intelligent robot system, Evolutionary al- rithm, Control of biological systems, AI and expert systems, Biological learning control systems, Neural networks, Genetic algorithm Control and Intelligent System: Distributed intelligence, Distributed/decentralized intelligent control, Distributed or decentralized control methods, Distributed and - bedded systems, Embedded intelligent control, Complex systems, Discrete event s- tems, Hybrid systems, Networked control systems, Delay systems, Fuzzy systems, Identification and estimation, Nonlinear systems, Precision motion control, Control applications, Control engineering education.
Over the past decades, although stochastic system control has been
studied intensively within the field of control engineering, all
the modelling and control strategies developed so far have
concentrated on the performance of one or two output properties of
the system. such as minimum variance control and mean value
control. The general assumption used in the formulation of
modelling and control strategies is that the distribution of the
random signals involved is Gaussian. In this book, a set of new
approaches for the control of the output probability density
function of stochastic dynamic systems (those subjected to any
bounded random inputs), has been developed. In this context, the
purpose of control system design becomes the selection of a control
signal that makes the shape of the system outputs p.d.f. as close
as possible to a given distribution. The book contains material on
the subjects of: - Control of single-input single-output and
multiple-input multiple-output stochastic systems; - Stable
adaptive control of stochastic distributions; - Model reference
adaptive control; - Control of nonlinear dynamic stochastic
systems; - Condition monitoring of bounded stochastic
distributions; - Control algorithm design; - Singular stochastic
systems.
A complete reference to adaptive control of systems with nonsmooth industrial nonlinearities such as:- backlash- dead-zones- component failure- friction- hysteresis- saturation- time delays. These nonlinearities in industrial actuators cause severe problems in the motion control of industrial processes, particularly in view of modern requirements of speed and precision of movement such as occur in semiconductor manufacturing, precision machining, and elsewhere. Actuator nonlinearities are ubiquitous in engineering practice and limit control system performance. While standard feedback control alone cannot handle these nonsmooth nonlinearities effectively, this book, with unified and systematic adaptive design methods developed in 16 chapters, shows how such nonlinear characteristics can be effectively compensated for by using adaptive and intelligent control techniques. This allows desired system performance to be achieved in the presence of uncertain nonlinearities. With extensive surveys of literature and comprehensive summaries of various design methods, the authors of the book chapters, who are experts in their areas of interest, present new solutions to some important issues in adaptive control of systems with various sorts of nonsmooth nonlinearities.In addition to providing solutions, the book is also aimed at motivating more research activities in the important field of adaptive control of nonsmooth nonlinear industrial systems by formulating several challenging open problems in related areas.
The chapters in this volume, and the volume itself, celebrate the life and research of Roberto Tempo, a leader in the study of complex networked systems, their analysis and control under uncertainty, and robust designs. Contributors include authorities on uncertainty in systems, robustness, networked and network systems, social networks, distributed and randomized algorithms, and multi-agent systems-all fields that Roberto Tempo made vital contributions to. Additionally, at least one author of each chapter was a research collaborator of Roberto Tempo's. This volume is structured in three parts. The first covers robustness and includes topics like time-invariant uncertainties, robust static output feedback design, and the uncertainty quartet. The second part is focused on randomization and probabilistic methods, which covers topics such as compressive sensing, and stochastic optimization. Finally, the third part deals with distributed systems and algorithms, and explores matters involving mathematical sociology, fault diagnoses, and PageRank computation. Each chapter presents exposition, provides new results, and identifies fruitful future directions in research. This book will serve as a valuable reference volume to researchers interested in uncertainty, complexity, robustness, optimization, algorithms, and networked systems.
Microsystems are an important success factor in the automobile industry. In order to fulfil the customers' requests for safety convenience and vehicle economy, and to satisfy environmental requirements, microsystems are becoming indispensable. Thus a large number of microsystem applications came into the discussion. With the international conference AMAA 2000, VDI/VDE-IT provides a platform for the discussion of all MST relevant components for automotive applications. The conference proceedings gather the papers by authors from automobile suppliers and manufacturers.
This book provides basic theories and implementations using SCILAB open-source software for digital images. The book simplifies image processing theories and well as implementation of image processing algorithms, making it accessible to those with basic knowledge of image processing. This book includes many SCILAB programs at the end of each theory, which help in understanding concepts. The book includes more than sixty SCILAB programs of the image processing theory. In the appendix, readers will find a deeper glimpse into the research areas in the image processing.
In the mathematical treatment of many problems which arise in physics, economics, engineering, management, etc., the researcher frequently faces two major difficulties: infinite dimensionality and randomness of the evolution process. Infinite dimensionality occurs when the evolution in time of a process is accompanied by a space-like dependence; for example, spatial distribution of the temperature for a heat-conductor, spatial dependence of the time-varying displacement of a membrane subject to external forces, etc. Randomness is intrinsic to the mathematical formulation of many phenomena, such as fluctuation in the stock market, or noise in communication networks. Control theory of distributed parameter systems and stochastic systems focuses on physical phenomena which are governed by partial differential equations, delay-differential equations, integral differential equations, etc., and stochastic differential equations of various types. This has been a fertile field of research with over 40 years of history, which continues to be very active under the thrust of new emerging applications. Among the subjects covered are: Control of distributed parameter systems; Stochastic control; Applications in finance/insurance/manufacturing; Adapted control; Numerical approximation . It is essential reading for applied mathematicians, control theorists, economic/financial analysts and engineers.
The present book includes a set of selected papers from the eighth "International Conference on Informatics in Control Automation and Robotics" (ICINCO 2011), held in Noordwijkerhout, The Netherlands, from 28 to 31 July 2011. The conference was organized in four simultaneous tracks: "Intelligent Control Systems and Optimization", "Robotics and Automation", "Signal Processing, Sensors, Systems Modeling and Control" and "Industrial Engineering, Production and Management". The book is based on the same structure. ICINCO received 322 paper submissions, not including those of workshops or special sessions, from 52 countries, in all continents. After a double blind paper review performed by the Program Committee only 33 submissions were accepted as full papers and thus selected for oral presentation, leading to a full paper acceptance ratio of 10%. Additional papers were accepted as short papers and posters. A further refinement was made after the conference, based also on the assessment of presentation quality, so that this book includes the extended and revised versions of the very best papers of ICINCO 2011. Commitment to high quality standards is a major concern of ICINCO that will be maintained in the next editions of this conference, including not only the stringent paper acceptance ratios but also the quality of the program committee, keynote lectures, workshops and logistics.
The Engineering of Complex Real-Time Computer Control Systems brings together in one place important contributions and up-to-date research results in this important area. The Engineering of Complex Real-Time Computer Control Systems serves as an excellent reference, providing insight into some of the most important research issues in the field.
Fault Diagnosis of Dynamic Systems provides readers with a glimpse into the fundamental issues and techniques of fault diagnosis used by Automatic Control (FDI) and Artificial Intelligence (DX) research communities. The book reviews the standard techniques and approaches widely used in both communities. It also contains benchmark examples and case studies that demonstrate how the same problem can be solved using the presented approaches. The book also introduces advanced fault diagnosis approaches that are currently still being researched, including methods for non-linear, hybrid, discrete-event and software/business systems, as well as, an introduction to prognosis. Fault Diagnosis of Dynamic Systems is valuable source of information for researchers and engineers starting to work on fault diagnosis and willing to have a reference guide on the main concepts and standard approaches on fault diagnosis. Readers with experience on one of the two main communities will also find it useful to learn the fundamental concepts of the other community and the synergies between them. The book is also open to researchers or academics who are already familiar with the standard approaches, since they will find a collection of advanced approaches with more specific and advanced topics or with application to different domains. Finally, engineers and researchers looking for transferable fault diagnosis methods will also find useful insights in the book.
In the last ten years, a true explosion of investigations into fuzzy modeling and its applications in control, diagnostics, decision making, optimization, pattern recognition, robotics, etc. has been observed. The attraction of fuzzy modeling results from its intelligibility and the high effectiveness of the models obtained. Owing to this the modeling can be applied for the solution of problems which could not be solved till now with any known conventional methods. The book provides the reader with an advanced introduction to the problems of fuzzy modeling and to one of its most important applications: fuzzy control. It is based on the latest and most significant knowledge of the subject and can be used not only by control specialists but also by specialists working in any field requiring plant modeling, process modeling, and systems modeling, e.g. economics, business, medicine, agriculture,and meteorology.
It is a great pleasure for me to introduce this book which has the main ambition to make thermodynamics more directly accessible to engineers and physicists by stressing the analogies with the other physical domains; this science has discouraged more than a few students. The book comes from the meeting of two persons: 1. Jean Thoma, inventor of hydrostatic machines and transmissions, pro fessor at the University of Waterloo (Canada), expert in simulation and pilgrim for the promotion of bond graphs around the world. 2. Belkacem Ould Bouamama, associated professor at the University of Science and Technology in Lille, France, specialist in industrial control and seduced by the richness and structure of the bond graph method. Thermodynamics is a difficult subject; its concepts like entropy, enthalpy, etc. are not intuitive and often very abstract. For this reason, it is current practice to neglect the thermal aspects, although they are necessarily there in all physical phenomena, and to use isothermal models. This is equivalent to think that the system is immersed in an infinite temperature reservoir and maintains its temperature constant even if it receives or dissipates electric and other type of energy. For heat transfer and variable temperature, if it should be included, the classical approach is to study the changes between equilibrium states, and not the process itself, which is more a thermostatic than a thermodynamic approach. This is justified when only the constraints of equilibrium state must be satisfied."
This book covers the conventional and most recent theories and applications in the area of evolutionary algorithms, swarm intelligence, and meta-heuristics. Each chapter offers a comprehensive description of a specific algorithm, from the mathematical model to its practical application. Different kind of optimization problems are solved in this book, including those related to path planning, image processing, hand gesture detection, among others. All in all, the book offers a tutorial on how to design, adapt, and evaluate evolutionary algorithms. Source codes for most of the proposed techniques have been included as supplementary materials on a dedicated webpage.
This is a book written by leading experts in the fields of cyber-physical systems (CPS) and wireless sensor networks (WSN). This book describes how wireless sensor networking technologies can help in establishing and maintaining seamless communications between the physical and cyber systems to enable efficient, secure, reliable acquisition, management, and routing of data. Topics covered include: an introduction to WSN and CPS; integration issues and challenges between WSN and CPS; enabling CPS design architectures with WSN technologies; cyber security in CPS; data management in CPS with WSN; routing in WSN for CPS; resource management in CPS; mobile sensors in CPS; intelligent WSN in CPS; resilient WSN for CPS; case studies of integrated WSN and CPS; and medical CPS. All chapters of the book have been rigorously peer-reviewed. Cyber-Physical System Design with Sensor Networking Technologies is essential reading for researchers, advanced students and developers working in the areas of cyber-physical systems and sensor networks.
This book incorporates recent advances in the design of feedback laws to the purpose of globally stabilizing nonlinear systems via state or output feedback. It is a continuation of the first volume by Alberto Isidori on Nonlinear Control Systems. Specifically this second volume will cover: *Stability analysis of interconnected nonlinear systems. The notion of Input-to-State stability and its role in analysing stability of cascade-connected or feedback-connected systems. The notion of dissipativity and its consequences (passivity and "gain"). *Robust stabilization in the case of parametric uncertainties. The case of state feedback: global or semi-global stabilization. The case of output feedback: semi-global stabilization. *Robust stabilization in the case of unstructured perturbations. Feedback design via the small-gain approach. Robust semi-global stabilization via output feedback. *Methods for asymptotic tracking, disturbance rejection and model following. Global and semi-global analysis. *Normal forms for multi-input multi-output nonlinear systems form a global point of view. Their role in feedback design.
Piecewise Linear (PL) approximation of non-linear behaviour is a well-known technique in synthesis and analysis of electrical networks. However, the PL description should be efficient in data storage and the description should allow simple retrieval of the stored information. Furthermore, it would be useful if the model description could handle a large class of piecewise linear mappings. Piecewise Linear Modeling and Analysis explains in detail all possible model descriptions for efficiently storing piecewise linear functions, starting with the Chua descriptions. Detailed explanation on how the model parameter can be obtained for a given mapping is provided and demonstrated by examples. The models are ranked to compare them and to show which model can handle the largest class of PL mappings. All model descriptions are implicitly related to the Linear Complementarity Problem and most solution techniques for this problem, like Katzenelson and Lemke, are discussed according to examples that are explained in detail. To analyse PL electrical networks a simulator is mandatory. Piecewise Linear Modeling and Analysis provides a detailed outline of a possible PL simulator, including pseudo-programming code. Several simulation domains like transient, AC and distortion are discussed. The book explains the attractive features of PL simulators with respect to mixed-level and mixed-signal simulation while paying due regard also to hierarchical simulation. Piecewise Linear Modeling and Analysis shows in detail how many existing components in electrical networks can be modeled. These range from digital logic and analog basic elements such as transistors to complex systems like Phase-Locked Loops and detection systems. Simulation results are also provided. The book concludes with a discussion on how to find multiple solutions for PL functions or networks. Again, the most common techniques are outlined using clear examples. Piecewise Linear Modeling and Analysis is an indispensable guide for researchers and designers interested in network theory, network synthesis and network analysis.
This book, written by experts in the field, is based on the latest research on the analysis and synthesis of switched time-delay systems. It covers the stability, filtering, fault detection and control problems, which are studied using the average dwell time approach. It presents both the continuous-time and discrete-time systems and provides useful insights and methods, as well as practical algorithms that can be considered in other complex systems, such as neuron networks and genetic regulatory networks, making it a valuable resource for researchers, scientists and engineers in the field of system sciences and control communities.
"Hybrid Predictive Control for Dynamic Transport Problems" develops methods for the design of predictive control strategies for nonlinear-dynamic hybrid discrete-/continuous-variable systems. The methodology is designed for real-time applications, particularly the study of dynamic transport systems. Operational and service policies are considered, as well as cost reduction. The control structure is based on a sound definition of the key variables and their evolution. A flexible objective function able to capture the predictive behaviour of the system variables is described. Coupled with efficient algorithms, mainly drawn from area of computational intelligence, this is shown to optimize performance indices for real-time applications. The framework of the proposed predictive control methodology is generic and, being able to solve nonlinear mixed integer optimization problems dynamically, is readily extendable to other industrial processes. The main topics of this book are: . hybrid predictive control (HPC) design based on evolutionary multiobjective optimization (EMO); . HPC based on EMO for dial-a-ride systems; and . HPC based on EMO for operational decisions in public transport systems. "Hybrid Predictive Control for Dynamic Transport Problems" is a comprehensive analysis of HPC and its application to dynamic transport systems. Introductory material on evolutionary algorithms is presented in summary in an appendix. The text will be of interest to control and transport engineers working on the operational optimization of transport systems and to academic researchers working with hybrid systems. The potential applications of the generic methods presented here to other process fields will make the book of interest to a wider group of researchers, scientists and graduate students working in other control-related disciplines."
This book surveys the well-known results and also presents a series of original results on the mathematical modeling of social networks, focusing on models of informational influence, control and confrontation. Online social networks are intended for communication, opinion exchange and information acquisition for their members, but recently, online social networks have been intensively used as the objects and means of informational control and an arena of informational confrontation. They have become a powerful informational influence tool, particularly for the manipulation of individuals, social groups and society as a whole, as well as a battlefield of information warfare (cyberwars). This book aimed at under- and postgraduate university students as well as experts in information technology and modeling of social systems and processes.
Control systems design methodologies have long suffered the
traditional and myopic dichotomy between time and frequency domain
approaches, each of them being specialized to cope with only
scarcely overlapping performance requirements. This book is aimed
at bridging the two approaches by presenting design methodologies
based on the minimization of a norm (H2/H() of a suitable transfer
function. A distinctive feature of these techniques is the fact
that they do not create only one solution to the design problem,
instead they provide a whole set of admissible solutions which
satisfy a constraint on the maximum deterioration of the
performance index.
This edited book aims at presenting current research activities in the field of robust variable-structure systems. The scope equally comprises highlighting novel methodological aspects as well as presenting the use of variable-structure techniques in industrial applications including their efficient implementation on hardware for real-time control. The target audience primarily comprises research experts in the field of control theory and nonlinear dynamics but the book may also be beneficial for graduate students.
In this book a general topological construction of extension is proposed for problems of attainability in topological spaces under perturbation of a system of constraints. This construction is realized in a special class of generalized elements defined as finitely additive measures. A version of the method of programmed iterations is constructed. This version realizes multi-valued control quasistrategies, which guarantees the solution of the control problem that consists in guidance to a given set under observation of phase constraints. Audience: The book will be of interest to researchers, and graduate students in the field of optimal control, mathematical systems theory, measure and integration, functional analysis, and general topology.
Time-Varying Systems and Computations is a unique book providing a detailed and consistent exposition of a powerful unifying framework (developed by the authors) for the study of time-variant systems and the computational aspects and problems that arise in this context. While complex function theory and linear algebra provide much of the fundamental mathematics needed by engineers engaged in numerical computations, signal processing and/or control, there has long been a large, abstruse gap between the two fields. This book shows the reader how the gap between analysis and linear algebra can be bridged. In a fascinating monograph, the authors explore, discover and exploit many interesting links that exist between classical linear algebraic concepts and complex analysis. Time-Varying Systems and Computations opens for the reader new and exciting perspectives on linear algebra from the analysis point of view. It clearly explains a framework that allows the extension of classical results, from complex function theory to the case of time-variant operators and even finite-dimensional matrices. These results allow the user to obtain computationally feasible schemes and models for complex and large-scale systems. Time-Varying Systems and Computations will be of interest to a broad spectrum of researchers and professionals, including applied mathematicians, control theorists, systems theorists and numerical analysts. It can also be used as a graduate course in linear time-varying system theory. |
You may like...
Estimation and Control of Large-Scale…
Tong Zhou, Keyou You, …
Paperback
R2,984
Discovery Miles 29 840
Artificial Intelligence in Real-Time…
Y.-H. Pao, S.R. LeClair
Paperback
R2,020
Discovery Miles 20 200
Model-Based Control Engineering - Recent…
Umar Zakir Abdul Hamid, Ahmad Athif Mohd Faudzi
Hardcover
R3,051
Discovery Miles 30 510
|