![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
Reliability is one of the fundamental criteria in engineering systems. Design and maintenance serve to support it throughout the systems life. As such, maintenance acts in parallel to production and can have a great impact on the availability and capacity of production and the quality of the products. The authors describe current and innovative methods useful to industry and society.
This book applies generalized fractional differentiation techniques of Caputo, Canavati and Conformable types to a great variety of integral inequalities e.g. of Ostrowski and Opial types, etc. Some of these are extended to Banach space valued functions. These inequalities have also great impact in numerical analysis, stochastics and fractional differential equations. The book continues with generalized fractional approximations by positive sublinear operators which derive from the presented Korovkin type inequalities and also includes abstract cases. It presents also multivariate complex Korovkin quantitative approximation theory. It follows M-fractional integral inequalities of Ostrowski and Polya types. The results are weighted so they provide a great variety of cases and applications. The second part of the book deals with the quantitative fractional Korovkin type approximation of stochastic processes and lays there the foundations of stochastic fractional calculus. The book considers both Caputo and Conformable fractional directions and derives regular and trigonometric results. The positive linear operators can be expectation operator commutative or not. This book results are expected to find applications in many areas of pure and applied mathematics and stochastics. As such this monograph is suitable for researchers, graduate students, and seminars of the above disciplines, also to be in all science and engineering libraries.
This monograph is intended for researchers and professionals in the fields of computer science and cybernetics. Nowadays, the areas of computer science and cybernetics (mainly its artificial intelligence branches) are subject to an immense degree of study and are applied in a wide range of technical and industrial projects. The individual chapters of this monograph were developed from a series of invited lectures at the Brno University of Technology in the years 2018 and 2019. The main aim of these lectures was to create an opportunity for students, academics, and professionals to exchange ideas, novel research methods, and new industrial applications in the fields related to soft computing and cybernetics. The authors of these chapters come from around the world and their works cover both new theoretical and application-oriented results from areas such as automation, control, robotics, optimization, statistics, reinforcement learning, image processing, and evolutionary algorithms.
This book helps students, researchers, and practicing engineers to understand the theoretical framework of control and system theory for discrete-time stochastic systems so that they can then apply its principles to their own stochastic control systems and to the solution of control, filtering, and realization problems for such systems. Applications of the theory in the book include the control of ships, shock absorbers, traffic and communications networks, and power systems with fluctuating power flows. The focus of the book is a stochastic control system defined for a spectrum of probability distributions including Bernoulli, finite, Poisson, beta, gamma, and Gaussian distributions. The concepts of observability and controllability of a stochastic control system are defined and characterized. Each output process considered is, with respect to conditions, represented by a stochastic system called a stochastic realization. The existence of a control law is related to stochastic controllability while the existence of a filter system is related to stochastic observability. Stochastic control with partial observations is based on the existence of a stochastic realization of the filtration of the observed process.
This book contains thirty-five selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2017). This was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters reflect the state of the art in theoretical and numerical methods and tools for optimization, and engineering design and societal applications. The volume focuses particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.
Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using "computationally intensive controls," so the second part of this book addresses the solution of optimization problems in "real" time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.
Robust Integration of Model-Based Fault Estimation and Fault-Tolerant Control is a systematic examination of methods used to overcome the inevitable system uncertainties arising when a fault estimation (FE) function and a fault-tolerant controller interact as they are employed together to compensate for system faults and maintain robustly acceptable system performance. It covers the important subject of robust integration of FE and FTC with the aim of guaranteeing closed-loop stability. The reader's understanding of the theory is supported by the extensive use of tutorial examples, including some MATLAB (R)-based material available from the Springer website and by industrial-applications-based material. The text is structured into three parts: Part I examines the basic concepts of FE and FTC, providing extensive insight into the importance of and challenges involved in their integration; Part II describes five effective strategies for the integration of FE and FTC: sequential, iterative, simultaneous, adaptive-decoupling, and robust decoupling; and Part III begins to extend the proposed strategies to nonlinear and large-scale systems and covers their application in the fields of renewable energy, robotics and networked systems. The strategies presented are applicable to a broad range of control problems, because in the absence of faults the FE-based FTC naturally reverts to conventional observer-based control. The book is a useful resource for researchers and engineers working in the area of fault-tolerant control systems, and supplementary material for a graduate- or postgraduate-level course on fault diagnosis and FTC. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
The author presents current work in bond graph methodology by
providing a compilation of contributions from experts across the
world that covers theoretical topics, applications in various areas
as well as software for bond graph modeling.
This book explains the essentials of fractional calculus and demonstrates its application in control system modeling, analysis and design. It presents original research to find high-precision solutions to fractional-order differentiations and differential equations. Numerical algorithms and their implementations are proposed to analyze multivariable fractional-order control systems. Through high-quality MATLAB programs, it provides engineers and applied mathematicians with theoretical and numerical tools to design control systems. Contents Introduction to fractional calculus and fractional-order control Mathematical prerequisites Definitions and computation algorithms of fractional-order derivatives and Integrals Solutions of linear fractional-order differential equations Approximation of fractional-order operators Modelling and analysis of multivariable fractional-order transfer function Matrices State space modelling and analysis of linear fractional-order Systems Numerical solutions of nonlinear fractional-order differential Equations Design of fractional-order PID controllers Frequency domain controller design for multivariable fractional-order Systems Inverse Laplace transforms involving fractional and irrational Operations FOTF Toolbox functions and models Benchmark problems for the assessment of fractional-order differential equation algorithms
This book presents a collection of papers on recent advances in problems concerning dynamics, optimal control and optimization. In many chapters, computational techniques play a central role. Set-oriented techniques feature prominently throughout the book, yielding state-of-the-art algorithms for computing general invariant sets, constructing globally optimal controllers and solving multi-objective optimization problems.
Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
Based on the design theory and development experience of Beidou navigation satellite system (BDS), this book highlights the space segment and the related satellite technologies as well as satellite-ground integration design from the perspective of engineering. The satellite navigation technology in this book is divided into uplink and reception technology, broadcasting link technology, inter-satellite link technology, time-frequency system technology, navigation signal generation and assessment technology, navigation information management technology, autonomous operation technology of navigation satellite. In closing, the book introduces readers to the technological development status and trend of BDS and other GNSS, and propose the technologies of future development. Unlike most current books on this topic, which largely concentrate on principles, receiver design or applications, the book also features substantial information on the role of satellite system in the GNSS and the process of signal information flow, and each chapter not only studies on the theoretical function and main technologies, but also focuses on engineering development. Accordingly, readers will gain not only a better understanding of navigation satellite systems as a whole, but also of their main components and key technologies.
This book consists of select proceedings of the International Conference on Functional Material, Manufacturing and Performances (ICFMMP) 2019, and presents latest research on using the combined intelligence of people, processes, and machines to impact the overall economics of manufacturing. The book focuses on optimizing manufacturing resources, improving business value and safety, and reducing waste - both on the floor and in back-office operations. It highlights the applications of the latest manufacturing execution system (MES), intelligent devices, machine-to-machine communication, and data analysis for the production lines and facilities. This book will be useful to manufacturers of finished goods and of sub-assemblies in the automotive, agriculture, and construction equipment sector. It will also provide solutions to make production strategies exceptional and can be a useful reference for beginners, researchers, and professionals interested in intelligent manufacturing technologies.
This book focuses on the design, implementation and applications of embedded systems and advanced industrial controls with microcontrollers. It combines classical and modern control theories as well as practical control programming codes to help readers learn control techniques easily and effectively. The book covers both linear and nonlinear control techniques to help readers understand modern control strategies. The author provides a detailed description of the practical considerations and applications in linear and nonlinear control systems. They concentrate on the ARM (R) Cortex (R)-M4 MCU system built by Texas Instruments (TM) called TM4C123GXL, in which two ARM (R) Cortex (R)-M4 MCUs, TM4C123GH6PM, are utilized. In order to help the reader develop and build application control software for a specified microcontroller unit. Readers can quickly develop and build their applications by using sample project codes provided in the book to access specified peripherals. The book enables readers to transfer from one interfacing protocol to another, even if they only have basic and fundamental understanding and basic knowledge of one interfacing function. Classical and Modern Controls with Microcontrollers is a powerful source of information for control and systems engineers looking to expand their programming knowledge of C, and of applications of embedded systems with microcontrollers. The book is a textbook for college students majored in CE, EE and ISE to learn and study classical and modern control technologies. The book can also be adopted as a reference book for professional programmers working in modern control fields or related to intelligent controls and embedded computing and applications. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book presents the most important tools, techniques, strategy and diagnostic methods used in industrial engineering. The current widely accepted methods of diagnosis and their properties are discussed. Also, the possible fruitful areas for further research in the field are identified.
Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems.
Cyber-physical systems (CPSs) combine cyber capabilities, such as computation or communication, with physical capabilities, such as motion or other physical processes. Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms is challenging due to their tight coupling with physical behavior, while it is vital that these algorithms be correct because we rely on them for safety-critical tasks. This textbook teaches undergraduate students the core principles behind CPSs. It shows them how to develop models and controls; identify safety specifications and critical properties; reason rigorously about CPS models; leverage multi-dynamical systems compositionality to tame CPS complexity; identify required control constraints; verify CPS models of appropriate scale in logic; and develop an intuition for operational effects. The book is supported with homework exercises, lecture videos, and slides.
This book presents recent methodological, technological, and experimental developments concerning human-friendly robots and their introduction into everyday life. The book contains a selection of 10 papers presented at the 13th edition of the International Workshop on Human-Friendly Robotics (HFR). The International Workshop on Human-Friendly Robotics (HFR) is an annual meeting that brings together academic scientists, researchers, and research scholars to present their latest, original findings on all aspects concerning human-friendly robotics where safe and dependable machines operate in close proximity to humans or directly interact with them in a wide range of contexts. The 13th edition was organized by the University of Innsbruck and took place in Innsbruck, Austria. The book is primarily intended for robotics researchers and postgraduates which are doing or willing to do research in fields related to human-friendly robotics, including human-robot interaction, robot control, robot learning, and intuitive interfaces. .
This book reflects the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation, which covers abundant state-of-the-art research theories and ideas. As a vital field of research that is highly relevant to current developments in a number of technological domains, the subjects it covered include intelligent computing, information processing, Communication Technology, Automatic Control, etc. The objective of the proceedings is to provide a major interdisciplinary forum for researchers, engineers, academicians as well as industrial professionals to present the most innovative research and development in the field of rail transportation electrical and information technologies. Engineers and researchers in academia, industry, and the government will also explore an insight view of the solutions that combine ideas from multiple disciplines in this field. The volumes serve as an excellent reference work for researchers and graduate students working on rail transportation, electrical and information technologies.
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques.
The research book is a continuation of the authors' previous works, which are focused on recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The book gathers selected contributions addressing a number of real-life applications including the identification of handwritten texts, watermarking techniques, simultaneous localization and mapping for mobile robots, motion control systems for mobile robots, analysis of indoor human activity, facial image quality assessment, android device controlling, processing medical images, clinical decision-making and foot progression angle detection. Given the tremendous interest among researchers in the development and applications of computer vision paradigms in the field of business, engineering, medicine, security and aviation, the book offers a timely guide for all PhD students, professors, researchers and software developers working in the areas of digital video processing and computer vision technologies.
The proceedings collect the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation. The topics cover novel traction drive technologies of rail transportation, safety technology of rail transportation system, rail transportation information technology, rail transportation operational management technology, rail transportation cutting-edge theory and technology etc. The proceedings can be a valuable reference work for researchers and graduate students working in rail transportation, electrical engineering and information technologies.
This book is devoted to the development of complex methods and means of their implementation with using UAVs aimed for improving the safety and efficiency of the energy system. The scientific problem of complex automated monitoring of the energy system objects with using UAVs has been solved, including the control of its elements in the visible and infrared range, the acoustic spectrum, as well as by the levels of the electric field strength. The scientific foundations of mathematical, physical and statistical modeling of electromagnetic and acoustic fields in the elements of electric power objects of complex spatial configurations have been created, taking into account the possibility of the appearance of such nonlinear processes as corona discharges and breakdowns at long air gaps. Improved methods are proposed for determining the exact location of accidents on power lines using UAVs on the basis of the developed mathematical models and the obtained analytical expressions. Conceptual foundations for the creation of methods and means for monitoring the state of insulation, lightning protection systems and the integrity of the structures of electric power facilities with using UAVs have been formed.
This book discusses the principle of automotive intelligent technology from the point of view of modern sensing and intelligent control. Based on the latest research in the field, it explores safe driving with intelligent vision; intelligent monitoring of dangerous driving; intelligent detection of automobile power and transmission systems; intelligent vehicle navigation and transportation systems; and vehicle-assisted intelligent technology. It draws on the author's research in the field of automotive intelligent technology to explain the fundamentals of vehicle intelligent technology, from the information sensing principle to mathematical models and the algorithm basis, enabling readers to grasp the concepts of automotive intelligent technology. Opening up new scientific horizons and fostering innovative thinking, the book is a valuable resource for researchers as well as undergraduate and graduate students.
Discrete-Time and Discrete-Space Dynamical Systems provides a systematic characterization of the similarities and differences of several types of discrete-time and discrete-space dynamical systems, including: Boolean control networks; nondeterministic finite-transition systems; finite automata; labelled Petri nets; and cellular automata. The book's perspective is primarily based on topological properties though it also employs semitensor-product and graph-theoretic methods where appropriate. It presents a series of fundamental results: invertibility, observability, detectability, reversiblity, etc., with applications to systems biology. Academic researchers with backgrounds in applied mathematics, engineering or computer science and practising engineers working with discrete-time and discrete-space systems will find this book a helpful source of new understanding for this increasingly important class of systems. The basic results to be found within are of fundamental importance for further study of related problems such as automated synthesis and safety control in cyber-physical systems using formal methods. |
![]() ![]() You may like...
Data Assimilation for the Earth System
Richard Swinbank, Victor Shutyaev, …
Hardcover
R4,421
Discovery Miles 44 210
Cross-Scale Coupling and Energy Transfer…
Yukitoshi Nishimura, Olga Verkhoglyadova, …
Paperback
R3,544
Discovery Miles 35 440
Conference Moshe Flato 1999…
Giuseppe Dito, Daniel Sternheimer
Hardcover
R3,079
Discovery Miles 30 790
A Statistical and Multi-wavelength Study…
Corentin Schreiber
Hardcover
R3,540
Discovery Miles 35 400
Asteroseismology of Stellar Populations…
Andrea Miglio, Patrick Eggenberger, …
Hardcover
UC/OS-III - The Real-Time Kernel and the…
Jean J. Labrosse, Juan P. Benavides, …
Hardcover
R2,385
Discovery Miles 23 850
Portfolio and Investment Analysis with…
John B. Guerard, Ziwei Wang, …
Hardcover
R2,491
Discovery Miles 24 910
|