![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
"Advances in Intelligent Vehicles" presents recent advances in intelligent vehicle technologies that enhance the safety, reliability, and performance of vehicles and vehicular networks and systems. This book provides readers with up-to-date research results and cutting-edge technologies in the area of intelligent vehicles and transportation systems. Topics covered include virtual and staged testing scenarios, collision avoidance, human factors, and modeling techniques. The Series in Intelligent Systems publishes titles that cover
state-of-the-art knowledge and the latest advances in research and
development in intelligent systems. Its scope includes theoretical
studies, design methods, and real-world implementations and
applications.
Over the past century, mechanization has been an important means for optimizing resource utilization, improving worker health and safety and reducing labor requirements in farming while increasing productivity and quality of 4F (Food, Fuel, Fiber, Feed). Recognizing this contribution, agricultural mechanization was considered as one of the top ten engineering achievements of 20th century by the National Academy of Engineering. Accordingly farming communities have adopted increasing level of automation and robotics to further improve the precision management of crops (including input resources), increase productivity and reduce farm labor beyond what has been possible with conventional mechanization technologies. It is more important than ever to continue to develop and adopt novel automation and robotic solutions into farming so that some of the most complex agricultural tasks, which require huge amount of seasonal labor such as fruit and vegetable harvesting, could be automated while meeting the rapidly increasing need for 4F. In addition, continual innovation in and adoption of agricultural automation and robotic technologies is essential to minimize the use of depleting resources including water, minerals and other chemicals so that sufficient amount of safe and healthy food can be produced for current generation while not compromising the potential for the future generation. This book aims at presenting the fundamental principles of various aspects of automation and robotics as they relate to production agriculture (the branch of agriculture dealing with farming operations from field preparation to seeding, to harvesting and field logistics). The building blocks of agricultural automation and robotics that are discussed in the book include sensing and machine vision, control, guidance, manipulation and end-effector technologies. The fundamentals and operating principles of these technologies are explained with examples from cutting-edge research and development currently going on around the word. This book brings together scientists, engineers, students and professionals working in these and related technologies to present their latest examples of agricultural automation and robotics research, innovation and development while explaining the fundamentals of the technology. The book, therefore, benefits those who wish to develop novel agricultural engineering solutions and/or to adopt them in the future.
This book discusses the principles, approaches, concepts and development programs for integrated aircraft avionics. The functional tasks of integrated on-board radio electronic equipment (avionics) of navigation, landing, data exchange and air traffic control are formulated that meet the modern requirements of civil and military aviation, and the principles of avionics integration are proposed. The modern approaches to the joint processing of information in navigation and landing complexes are analyzed. Algorithms of multichannel information processing in integrated avionics are considered, and examples of its implementation are presented. This book is intended for scientists and professionals in the field of aviation equipment, students and graduate students of relevant specialties.
This book deals with the stabilization issue of infinite dimensional dynamical systems both at the theoretical and applications levels. Systems theory is a branch of applied mathematics, which is interdisciplinary and develops activities in fundamental research which are at the frontier of mathematics, automation and engineering sciences. It is everywhere, innumerable and daily, and moreover is there something which is not system: it is present in medicine, commerce, economy, psychology, biological sciences, finance, architecture (construction of towers, bridges, etc.), weather forecast, robotics, automobile, aeronautics, localization systems and so on. These are the few fields of application that are useful and even essential to our society. It is a question of studying the behavior of systems and acting on their evolution. Among the most important notions in system theory, which has attracted the most attention, is stability. The existing literature on systems stability is quite important, but disparate, and the purpose of this book is to bring together in one document the essential results on the stability of infinite dimensional dynamical systems. In addition, as such systems evolve in time and space, explorations and research on their stability have been mainly focused on the whole domain in which the system evolved. The authors have strongly felt that, in this sense, important considerations are missing: those which consist in considering that the system of interest may be unstable on the whole domain, but stable in a certain region of the whole domain. This is the case in many applications ranging from engineering sciences to living science. For this reason, the authors have dedicated this book to extension of classical results on stability to the regional case. This book considers a very important issue, which is that it should be accessible to mathematicians and to graduate engineering with a minimal background in functional analysis. Moreover, for the majority of the students, this would be their only acquaintance with infinite dimensional system. Accordingly, it is organized by following increasing difficulty order. The two first chapters deal with stability and stabilization of infinite dimensional linear systems described by partial differential equations. The following chapters concern original and innovative aspects of stability and stabilization of certain classes of systems motivated by real applications, that is to say bilinear and semi-linear systems. The stability of these systems has been considered from a global and regional point of view. A particular aspect concerning the stability of the gradient has also been considered for various classes of systems. This book is aimed at students of doctoral and master's degrees, engineering students and researchers interested in the stability of infinite dimensional dynamical systems, in various aspects.
A field bus is a two-way link between a programmable controller or operations monitor and an industrial device like a sensor, an electric motor, or a switch. It is a critical part of any automated industrial process - whether for factory automation (discrete processes like an assembly line) or process automation (continuous flow of materials being mixed, treated, or processed). PROFIBUS is a widely established program that allows for communication among and between controllers, fieldbuses, and actuator devices. This very concise introduction for industrial engineers, controls engineers, and manufacturing technicians covers the basics of field bus architecture and communication and the fundamentals of the PROFIBUS language protocol.
This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.
This book is the first comprehensive book about reservoir computing (RC). RC is a powerful and broadly applicable computational framework based on recurrent neural networks. Its advantages lie in small training data set requirements, fast training, inherent memory and high flexibility for various hardware implementations. It originated from computational neuroscience and machine learning but has, in recent years, spread dramatically, and has been introduced into a wide variety of fields, including complex systems science, physics, material science, biological science, quantum machine learning, optical communication systems, and robotics. Reviewing the current state of the art and providing a concise guide to the field, this book introduces readers to its basic concepts, theory, techniques, physical implementations and applications. The book is sub-structured into two major parts: theory and physical implementations. Both parts consist of a compilation of chapters, authored by leading experts in their respective fields. The first part is devoted to theoretical developments of RC, extending the framework from the conventional recurrent neural network context to a more general dynamical systems context. With this broadened perspective, RC is not restricted to the area of machine learning but is being connected to a much wider class of systems. The second part of the book focuses on the utilization of physical dynamical systems as reservoirs, a framework referred to as physical reservoir computing. A variety of physical systems and substrates have already been suggested and used for the implementation of reservoir computing. Among these physical systems which cover a wide range of spatial and temporal scales, are mechanical and optical systems, nanomaterials, spintronics, and quantum many body systems. This book offers a valuable resource for researchers (Ph.D. students and experts alike) and practitioners working in the field of machine learning, artificial intelligence, robotics, neuromorphic computing, complex systems, and physics.
This book establishes an important mathematical connection between cooperative control problems and network optimization problems. It shows that many cooperative control problems can in fact be understood, under certain passivity assumptions, using a pair of static network optimization problems. Merging notions from passivity theory and network optimization, it describes a novel network optimization approach that can be applied to the synthesis of controllers for diffusively-coupled networks of passive (or passivity-short) dynamical systems. It also introduces a data-based, model-free approach for the synthesis of network controllers for multi-agent systems with passivity-short agents. Further, the book describes a method for monitoring link faults in multi-agent systems using passivity theory and graph connectivity. It reports on some practical case studies describing the effectivity of the developed approaches in vehicle networks. All in all, this book offers an extensive source of information and novel methods in the emerging field of multi-agent cooperative control, paving the way to future developments of autonomous systems for various application domains
This book presents the select peer-reviewed proceedings of the International Conference on Futuristic Trends in Mechanical Engineering (ICOFTIME 2020). The contents focus on latest research in different areas of mechanical engineering such as additive manufacturing, vibrations, robotics and automation, nano and smart materials, green energy, supply chain management, aviation, and biomechanics. The book also includes numerical and optimization methods relevant for several real-life mechanical engineering problems. Given its contents, this book will prove useful for researchers and professionals alike.
This book presents recent results on fault diagnosis and condition monitoring of airborne electromechanical actuators, illustrating both algorithmic and hardware design solutions to enhance the reliability of onboard more electric aircraft. The book begins with an introduction to the current trends in the development of electrically powered actuation systems for aerospace applications. Practical examples are proposed to help present approaches to reliability, availability, maintainability and safety analysis of airborne equipment. The terminology and main strategies for fault diagnosis and condition monitoring are then reviewed. The core of the book focuses on the presentation of relevant case studies of fault diagnosis and monitoring design for airborne electromechanical actuators, using different techniques. The last part of the book is devoted to a summary of lessons learned and practical suggestions for the design of fault diagnosis solutions of complex airborne systems. The book is written with the idea of providing practical guidelines on the development of fault diagnosis and monitoring algorithms for airborne electromechanical actuators. It will be of interest to practitioners in aerospace, mechanical, electronic, reliability and systems engineering, as well as researchers and postgraduates interested in dynamical systems, automatic control and safety-critical systems. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This volume gathers the latest advances, innovations and applications in the field of vibration and technology of machinery, as presented by leading international researchers and engineers at the XV International Conference on Vibration Engineering and Technology of Machinery (VETOMAC), held in Curitiba, Brazil on November 10-15, 2019. Topics include concepts and methods in dynamics, dynamics of mechanical and structural systems, dynamics and control, condition monitoring, machinery and structural dynamics, rotor dynamics, experimental techniques, finite element model updating, industrial case studies, vibration control and energy harvesting, and MEMS. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This volume gathers the latest advances, innovations and applications in the field of cable robots, as presented by leading international researchers and engineers at the 5th International Conference on Cable-Driven Parallel Robots (CableCon 2021), held as virtual event on July 7-9, 2021. It covers the theory and applications of cable-driven parallel robots, including their classification, kinematics and singularity analysis, workspace, statics and dynamics, cable modeling and technologies, control and calibration, design methodologies, hardware development, experimental evaluation and prototypes, as well as application reports and new application concepts. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This monograph presents innovative research regarding the body experience of human individuals who are using assistive robotic devices such as wearable robots or teleoperation systems. The focus is set on human-in-the-loop experiments that help to empirically evaluate how users experience devices. Moreover, these experiments allow for further examination of the underlying mechanisms of body experience through extending existing psychological paradigms, e.g., by disentangling tactile feedback from contacts. Besides reporting and discussing psychological examinations, the influence of various aspects of engineering design is investigated, e.g., different implementations of haptic interfaces or robot control. As haptics are of paramount importance in this tight type of human-robot interaction, it is explored with respect to modality as well as temporal and spatial effects. The first part of the book motivates the research topic and gives an in-depth analysis of the experimental requirements. The second and third part present experimental designs and studies of human-robot body experience regarding the upper and lower limbs as well as cognitive models to predict them. The fourth part discusses a multitude of design considerations and provides directions to guide future research on bidirectional human-machine interfaces and non-functional haptic feedback.
The past few years have seen the attention and rapid developments in event-triggered sampled-data systems, in which the effect of event-triggered sensor measurements and controller updates is explored in controller analysis and design. This book offers the first systematic treatment of event-triggered sampled-data control system design using active disturbance rejection control (ADRC), an effective approach that is popular in both theoretic research and industrial applications. Extensive application examples with numerous illustrations are included to show how the event-triggered ADRC with theoretic performance guarantees can be implemented in engineering systems and how the performance can be actually achieved. For theoretic researchers and graduate students, the presented results provide new directions in theoretic research on event-triggered sampled-data systems; for control practitioners, the book offers an effective approach to achieving satisfactory performance with limited sampling rates.
This book presents mathematical models of demand-side management programs, together with operational and control problems for power and renewable energy systems. It reflects the need for optimal operation and control of today's electricity grid at both the supply and demand spectrum of the grid. This need is further compounded by the advent of smart grids, which has led to increased customer/consumer participation in power and renewable energy system operations. The book begins by giving an overview of power and renewable energy systems, demand-side management programs and algebraic modeling languages. The overview includes detailed consideration of appliance scheduling algorithms, price elasticity matrices and demand response incentives. Furthermore, the book presents various power system operational and control mathematical formulations, incorporating demand-side management programs. The mathematical formulations developed are modeled and solved using the Advanced Interactive Multidimensional Modeling System (AIMMS) software, which offers a powerful yet simple algebraic modeling language for solving optimization problems. The book is extremely useful for all power system operators and planners who are concerned with optimal operational procedures for managing today's complex grids, a context in which customers are active participants and can curb/control their demand. The book details how AIMMS can be a useful tool in optimizing power grids and also offers a valuable research aid for students and academics alike.
This book provides a thorough guide to the use of numerical methods in energy systems and applications. It presents methods for analysing engineering applications for energy systems, discussing finite difference, finite element, and other advanced numerical methods. Solutions to technical problems relating the application of these methods to energy systems are also thoroughly explored. Readers will discover diverse perspectives of the contributing authors and extensive discussions of issues including: * a wide variety of numerical methods concepts and related energy systems applications;* systems equations and optimization, partial differential equations, and finite difference method;* methods for solving nonlinear equations, special methods, and their mathematical implementation in multi-energy sources;* numerical investigations of electrochemical fields and devices; and* issues related to numerical approaches and optimal integration of energy consumption. This is a highly informative and carefully presented book, providing scientific and academic insight for readers with an interest in numerical methods and energy systems.
The manufacturing industry has been optimized in recent years due to the rise of new technologies. These advances have paved the way for the development of intelligent vehicles. Intelligent Vehicles and Materials Transportation in the Manufacturing Sector: Emerging Research and Opportunities is a pivotal source of scholarly research on the various aspects of manufacturing vehicles with intelligent technology components. Including a range of perspectives on topics such as material handling, automated guided vehicles, and industrial robots, this book is ideally designed for engineers, academics, professionals, and practitioners actively involved in the manufacturing sector. |
![]() ![]() You may like...
Closing The Gap - The Fourth Industrial…
Tshilidzi Marwala
Paperback
Rapid Damage-Free Robotic Harvesting of…
Jizhan Liu, Zhiguo Li, …
Hardcover
R3,107
Discovery Miles 31 070
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R4,227
Discovery Miles 42 270
Systems, Decision and Control in Energy…
Artur Zaporozhets, Volodymyr Artemchuk
Hardcover
R4,632
Discovery Miles 46 320
Model-Based Control Engineering - Recent…
Umar Zakir Abdul Hamid, Ahmad Athif Mohd Faudzi
Hardcover
R3,475
Discovery Miles 34 750
Programmable Logic Controllers - Pearson…
James Rehg, Glenn Sartori
Paperback
R2,382
Discovery Miles 23 820
|