![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
A large international conference on Advances in Intelligent Control and Computer Engineering was held in Hong Kong, March 17-19, 2010, under the auspices of the International MultiConference of Engineers and Computer Scientists (IMECS 2010). The IMECS is organized by the International Association of Engineers (IAENG). "Intelligent Control and Computer Engineering" contains 25 revised and extended research articles written by prominent researchers participating in the conference. Topics covered include artificial intelligence, control engineering, decision supporting systems, automated planning, automation systems, systems identification, modelling and simulation, communication systems, signal processing, and industrial applications. "Intelligent Control and Computer Engineering" offers the state of the art of tremendous advances in intelligent control and computer engineering and also serves as an excellent reference text for researchers and graduate students, working on intelligent control and computer engineering.
This book gives a wide-ranging description of the many facets of complex dynamic networks and systems within an infrastructure provided by integrated control and supervision: envisioning, design, experimental exploration, and implementation. The theoretical contributions and the case studies presented can reach control goals beyond those of stabilization and output regulation or even of adaptive control. Reporting on work of the Control of Complex Systems (COSY) research program, Complex Systems follows from and expands upon an earlier collection: Control of Complex Systems by introducing novel theoretical techniques for hard-to-control networks and systems. The major common feature of all the superficially diverse contributions encompassed by this book is that of spotting and exploiting possible areas of mutual reinforcement between control, computing and communications. These help readers to achieve not only robust stable plant system operation but also properties such as collective adaptivity, integrity and survivability at the same time retaining desired performance quality. Applications in the individual chapters are drawn from: * the general implementation of model-based diagnosis and systems engineering in medical technology, in communication, and in power and airport networks; * the creation of biologically inspired control brains and safety-critical human-machine systems, * process-industrial uses; * biped robots; * large space structures and unmanned aerial vehicles; and * precision servomechanisms and other advanced technologies. Complex Systems provides researchers from engineering, applied mathematics and computer science backgrounds with innovative theoretical and practical insights into the state-of-the-art of complex networks and systems research. It employs physical implementations and extensive computer simulations. Graduate students specializing in complex-systems
This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.
An instructive reference that will help control researchers and engineers, interested in a variety of industrial processes, to take advantage of a powerful tuning method for the ever-popular PID control paradigm. This monograph presents explicit PID tuning rules for linear control loops regardless of process complexity. It shows the reader how such loops achieve zero steady-position, velocity, and acceleration errors and are thus able to track fast reference signals. The theoretical development takes place in the frequency domain by introducing a general-transfer-function-known process model and by exploiting the principle of the magnitude optimum criterion. It is paralleled by the presentation of real industrial control loops used in electric motor drives. The application of the proposed tuning rules to a large class of processes shows that irrespective of the complexity of the controlled process the shape of the step and frequency response of the control loop exhibits a specific performance. This specific performance, along with the PID explicit solution, formulates the basis for developing an automatic tuning method for the PID controller parameters which is a problem often met in many industry applications-temperature, pH, and humidity control, ratio control in product blending, and boiler-drum level control, for example. The process of the model is considered unknown and controller parameters are tuned automatically such that the aforementioned performance is achieved. The potential both for the explicit tuning rules and the automatic tuning method is demonstrated using several examples for benchmark process models recurring frequently in many industry applications.
This book presents a domain of extreme industrial and scientific interest: the study of smart systems and structures. It presents polytope projects as comprehensive physical and cognitive architectures that support the investigation, fabrication and implementation of smart systems and structures. These systems feature multifunctional components that can perform sensing, control, and actuation. In light of the fact that devices, tools, methodologies and organizations based on electronics and information technology for automation, specific to the third industrial revolution, are increasingly reaching their limits, it is essential that smart systems be implemented in industry. Polytope projects facilitate the utilization of smart systems and structures as key elements of the fourth industrial revolution. The book begins by presenting polytope projects as a reference architecture for cyber-physical systems and smart systems, before addressing industrial process synthesis in Chapter 2. Flow-sheet trees, cyclic separations and smart configurations for multi-component separations are discussed here. In turn, Chapter 3 highlights periodic features for drug delivery systems and networks of chemical reactions, while Chapter 4 applies conditioned random walks to polymers and smart materials structures. Chapter 5 examines self-assembly and self-reconfiguration at different scales from molecular to micro systems. Smart devices and technologies are the focus of chapter 6. Modular micro reactor systems and timed automata are examined in selected case studies. Chapter 7 focuses on inferential engineering designs, concept-knowledge, relational concept analysis and model driven architecture, while Chapter 8 puts the spotlight on smart manufacturing, industry 4.0, reference architectures and models for new product development and testing. Lastly, Chapter 9 highlights the polytope projects methodology and the prospects for smart systems and structures. Focusing on process engineering and mathematical modeling for the fourth industrial revolution, the book offers a unique resource for engineers, scientists and entrepreneurs working in chemical, biochemical, pharmaceutical, materials science or systems chemistry, students in various domains of production and engineering, and applied mathematicians.
This book provides the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible, although a more theoretical control viewpoint is also given. Focusing on the induction motor with, the concepts of stability and nonlinear control theory given in appendices, this book covers: speed sensorless control; design of adaptive observers and parameter estimators; a discussion of nonlinear adaptive controls containing parameter estimation algorithms; and comparative simulations of different control algorithms. The book sets out basic assumptions, structural properties, modelling, state feedback control and estimation algorithms, then moves to more complex output feedback control algorithms, based on stator current measurements, and modelling for speed sensorless control. The induction motor exhibits many typical and unavoidable nonlinear features.
This book presents operational and practical issuesof automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modernvehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, "Automotive Mechatronics" aimsat improving automotive mechatronics education and emphasises the trainingof students' experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME I: RBW or XBW unibody or chassis-motion mechatronic control hypersystems;DBW AWD propulsion mechatronic control systems; BBW AWB dispulsion mechatronic control systems; VOLUME II: SBW AWS conversion mechatronic control systems; ABW AWA suspension mechatronic control systems. This volumewas developed for undergraduate and postgraduate students as wellas for professionals involved in all disciplines related to the design or research and development of automotive vehicle dynamics, powertrains, brakes, steering, and shock absorbers (dampers). Basic knowledge of college mathematics, college physics, and knowledge of the functionality of automotive vehicle basic propulsion, dispulsion, conversion and suspension systems is required. "
This book contains applications of micromechanisms and microactuators in several very modern technical fields such as mechatronics, biomechanics, machines, micromachines, robotics and apparatuses. In connection with its topic, the work combines the theoretical results with experimental tests on micromechanisms and microactuators. The book presents the most recent research advances in Machine and Mechanisms Science. It includes the accepted reviewed papers of researchers specialized in the topics of the conference: microactuators and micro-assembly, micro sensors involving movable solids, micro-opto-mechanical devices, mechanical tools for cell and tissue studies, micromanipulation and micro-stages, micro-scale flight and swimming, micro-robotics and surgical tools, micron-scale power generation, miniature manufacturing machines, micromechatronics and micro-mechanisms, biomechanics micro and nano scales and control issues in microsystems. The presented applications of micromechanisms and microactuators in many technical fields will interest industrial companies and encourage scientifical knowledge and cooperation between academia and industry.
The MSP430 is a simple 16-bit microcontroller with a compact and
economical CPU containing only 27 instructions and 16 registers. It
offers other advantages which make it suitable for low power
applications: a rich variety of peripherals for analog input and
output; rapid processing wake up time; the treatment of data and
address on equal footing.
Systems, cybernetics, control, and automation (SCCA) are four interrelated and overlapping scientific and technological fields that have contributed substantially to the development, growth, and progress of human society. A large number of models, methods, and tools were developed that assure high efficiency of SCCA applied to practical situations. The real-life applications of SCCA encompass a wide range of man-made or biological systems, including transportations, power generation, chemical industry, robotics, manufacturing, cybernetics organisms (cyborgs), aviation, economic systems, enterprise, systems, medical/health systems, environmental applications, and so on. The SCCA fields exhibit strong influences on society and rise, during their use and application, many ethical concerns and dilemmas. This book provides a consolidated and concise overview of SCCA, in a single volume for the first time, focusing on ontological, epistemological, social impact, ethical, and general philosophical issues. It is appropriate for use in engineering courses as a convenient tutorial source providing fundamental conceptual and educational material on these issues, or for independent reading by students and scientists. Included in the book is: * Background material on philosophy and systems theory * Major ontological, epistemological, societal and ethical/philosophical aspects of the four fields that are considered * Over 400 references and a list of 130 additional books in the relevant fields * Over 100 colored photos and 70 line figures that illustrate the text
Kinematics is an exciting area of computational mechanics which plays a central role in a great variety of fields and industrial applications. Apart from research in pure kinematics, the field offers challenging problems of practical relevance that need to be solved in an interdisciplinary manner in order for new technologies to develop. The present book collects a number of important contributions presented during the First Conference on Interdisciplinary Applications of Kinematics (IAK 2008) held in Lima, Peru. To share inspiration and non-standard solutions among the different applications, the conference brought together scientists from several research fields related to kinematics, such as for example, computational kinematics, multibody systems, industrial machines, robotics, biomechanics, mechatronics and chemistry. The conference focused on all aspects of kinematics, namely modeling, optimization, experimental validation, industrial applications, theoretical kinematical methods, and design. The results should be of interest for practicing and research engineers as well as Ph.D. students from the fields of mechanical and electrical engineering, computer science, and computer graphics.
The definitive guide toadvanced control system design Advanced Modern Control System Theory and Design offers the most comprehensive treatment of advanced control systems available today. Superbly organized and easy to use, this book is designed for an advanced course and is a companion volume to the introductory text, Modern Control System Theory and Design, Second Edition (or any other introductory book on control systems). In addition, it can serve as an excellent text for practicing control system engineers who need to learn more advanced control systems techniques in order to perform their tasks. Advanced Modern Control Systems Theory and Design briefly reviews introductory control system analysis concepts and then presents the methods for designing linear control sys-tems using single-degree and two-degrees-of-freedom compensation techniques. The very important subjects of modern control system design using state-space, pole placement, Ackermann's formula, estimation, robust control, and H8 techniques are then presented. The following crucial subjects are then covered in the presentation:
Other notable features of this volume are:
This book meets head-on the difficulty of making practical use of new systems theory, presenting a selection of varied applications together with relevant theory. It shows how workable identification and control solutions can be derived by adapting and extrapolating from the theory. Each chapter has a common structure: a brief presentation of theory; the description of a particular application; experimental results; and a section highlighting, explaining and laying out solutions to the discrepancy between the theoretical and the practical.
Modeling and Control of Batch Processes presents state-of-the-art techniques ranging from mechanistic to data-driven models. These methods are specifically tailored to handle issues pertinent to batch processes, such as nonlinear dynamics and lack of online quality measurements. In particular, the book proposes: a novel batch control design with well characterized feasibility properties; a modeling approach that unites multi-model and partial least squares techniques; a generalization of the subspace identification approach for batch processes; and applications to several detailed case studies, ranging from a complex simulation test bed to industrial data. The book's proposed methodology employs statistical tools, such as partial least squares and subspace identification, and couples them with notions from state-space-based models to provide solutions to the quality control problem for batch processes. Practical implementation issues are discussed to help readers understand the application of the methods in greater depth. The book includes numerous comments and remarks providing insight and fundamental understanding into the modeling and control of batch processes. Modeling and Control of Batch Processes includes many detailed examples of industrial relevance that can be tailored by process control engineers or researchers to a specific application. The book is also of interest to graduate students studying control systems, as it contains new research topics and references to significant recent work. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Networked and Distributed Predictive Control presents rigorous, yet practical, methods for the design of networked and distributed predictive control systems - the first book to do so. The design of model predictive control systems using Lyapunov-based techniques accounting for the influence of asynchronous and delayed measurements is followed by a treatment of networked control architecture development. This shows how networked control can augment dedicated control systems in a natural way and takes advantage of additional, potentially asynchronous and delayed measurements to maintain closed loop stability and significantly to improve closed-loop performance. The text then shifts focus to the design of distributed predictive control systems that cooperate efficiently in computing optimal manipulated input trajectories that achieve desired stability, performance and robustness specifications but spend a fraction of the time required by centralized control systems. Key features of this book include: * new techniques for networked and distributed control system design; * insight into issues associated with networked and distributed predictive control and their solution; * detailed appraisal of industrial relevance using computer simulation of nonlinear chemical process networks and wind- and solar-energy-generation systems; and * integrated exposition of novel research topics and rich resource of references to significant recent work. A full understanding of Networked and Distributed Predictive Control requires a basic knowledge of differential equations, linear and nonlinear control theory and optimization methods and the book is intended for academic researchers and graduate students studying control and for process control engineers. The constant attention to practical matters associated with implementation of the theory discussed will help each of these groups understand the application of the book's methods in greater depth.
This book reports on an outstanding research devoted to modeling and control of dynamic systems using fractional-order calculus. It describes the development of model-based control design methods for systems described by fractional dynamic models. More than 300 years had passed since Newton and Leibniz developed a set of mathematical tools we now know as calculus. Ever since then the idea of non-integer derivatives and integrals, universally referred to as fractional calculus, has been of interest to many researchers. However, due to various issues, the usage of fractional-order models in real-life applications was limited. Advances in modern computer science made it possible to apply efficient numerical methods to the computation of fractional derivatives and integrals. This book describes novel methods developed by the author for fractional modeling and control, together with their successful application in real-world process control scenarios.
This book is intended for engineers, technicians and people who plan to use fuzzy control in more or less developed and advanced control systems for manufacturing processes, or directly for executive equipment. Assuming that the reader possesses elementary knowledge regarding fuzzy sets and fuzzy control, by way of a reminder, the first parts of the book contain a reminder of the theoretical foundations as well as a description of the tools to be found in the Matlab/Simulink environment in the form of a toolbox. The major part of the book presents applications for fuzzy controllers in control systems for various manufacturing and engineering processes. It presents seven processes and problems which have been programmed using fuzzy controllers. The issues discussed concern the field of Environmental Engineering. Examples are the control of a flood wave passing through a hypothetical, and then the real Dobczyce reservoir in the Raba River, which is located in the upper Vistula River basin in Southern Poland, the control and water management in a cascade of reservoirs, a broadly defined combustion process model, modern water heating systems and many other.
A complete solution for problems of vibration control in structures that may be subject to a broadband primary vibration field, this book addresses the following steps: experimental identification of the dynamic model of the structure; optimal placement of sensors and actuators; formulation of control constraints in terms of controller frequency response shape; controller design and simulation; and controller implementation and rapid prototyping. The identification procedure is a gray-box approach tailored to the estimation of modal parameters of large-scale flexible structures. The actuator/sensor placement algorithm maximizes a modal controllability index improving the effectiveness of the control. Considering limitations of sensors and actuators, the controller is chosen as a stable, band-pass MIMO system resulting from the closed-form solution of a robust control problem. Experimental results on an aeronautical stiffened skin panel are presented using rapid-prototyping hardware.
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation. In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions. Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill's analogy, is required to investigate airborne noises produced by turbochargers in passenger vehicles. The content of this book is intended for advanced undergraduates, graduates in mechanical engineering, research scientists and practicing engineers who want to better understand the interactions between these working fields and the resulting impact on the interesting topic of Aero and Vibroacoustics of Automotive Turbochargers.
This book introduces the reader in a systematical way to the design philosophy behind vector control systems. The mathematical motor models based on complex-space vector descriptions as well as the control structures for DC motors provide a perfect basis for explaining the principles of AC motor vector control. An in-depth review of electromagnetic transients in induction motors under various methods of frequency control is given. This is explained with the help of appropriate block schemes and new equivalent circuits. Properties of AC motors under non-sinusoidal supply are reviewed. The basic power converter topologies applied in motor control technology as well as symmetry and loss reduction problems are discussed. Some examples of controller design methods are presented step by step. An important feature of the book is that it contains many examples of systems applied in practical engineering as well as simulation and experimental results. The volume will be of interest to all those familiar with the basics of electrical machines and control systems theory. Therefore, it is recommended to students of electrical, electronics and mechanics departments. The book can also be used by those working in industry, who are interested in modern power electronics, drives and motion control, robotics as well as automation of industrial processes.
"Team Cooperation in a Network of Multi-Vehicle Unmanned Systems" develops a framework for modeling and control of a network of multi-agent unmanned systems in a cooperative manner and with consideration of non-ideal and practical considerations. The main focus of this book is the development of synthesis-based algorithms rather than on conventional analysis-based approaches to the team cooperation, specifically the team consensus problems. The authors provide a set of modified design-based consensus algorithms whose optimality is verified through introduction of performance indices. "
Nanorobots represent a nanoscale device where proteins such as DNA, carbon nanotubes could act as motors, mechanical joints, transmission elements, or sensors. When these different components were assembled together they can form nanorobots with multi-degree-of-freedom, able to apply forces and manipulate objects in the nanoscale world. Design, Modeling and Characterization of Bio-Nanorobotic Systems investigates the design, assembly, simulation, and prototyping of biological and artificial molecular structures with the goal of implementing their internal nanoscale movements within nanorobotic systems in an optimized manner.
Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systems for continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist-Hall and Nichols diagrams are presented and discretized proportional-integral-derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete event systems. The nonlinear phenomena associated with practically important event-driven systems are elucidated. The dynamics and stability of finite-state and discrete-event systems are defined. Academic researchers interested in the uses of discrete modelling and control of continuous systems will find Discrete Control Systems instructive. The inclusion of end-of-chapter problems also makes the book suitable for use in self study either by professional control engineers or graduate students supplementing a more formal regimen of learning.
Over the past decades, fault diagnosis (FDI) and fault tolerant control strategies (FTC) have been proposed based on different techniques for linear and nonlinear systems. Indeed a considerable attention is deployed in order to cope with diverse damages resulting in faults occurrence. |
You may like...
Smart Manufacturing - Integrating…
Scott , M. Shemwell, Hebab A. Quazi
Hardcover
R2,416
Discovery Miles 24 160
Foundations of Multi-Paradigm Modelling…
Paulo Carreira, Vasco Amaral, …
Hardcover
R1,444
Discovery Miles 14 440
|