![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
This monograph puts the reader in touch with a decade s worth of
new developments in the field of fuzzy control specifically those
of the popular Takagi Sugeno (T S) type. New techniques for
stabilizing control analysis and design of arebased on multiple
Lyapunov functions and linear matrix inequalities (LMIs). All the
results are illustrated with numerical examples and figures and a
rich bibliography is provided for further investigation. "Advanced Takagi Sugeno Fuzzy Systems "provides researchers and graduate students interested in fuzzy control systems with further reliable means for maintaining stability and performance even when a sensor and/or actuator malfunctions."
This self-contained monograph describes basic set-theoretic methods for control. It provides a discussion of their links to fundamental problems in Lyapunov stability analysis and stabilization, optimal control, control under constraints, persistent disturbance rejection, and uncertain systems analysis and synthesis. The work presents several established and potentially new applications, along with numerical examples and case studies. A key theme is the trade-off between exact (but computationally intensive) and approximate (but conservative) solutions to problems. Mathematical language is kept to the minimum necessary.
This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering.
Mechatronics is the synergistic combination of precision engineering, electronics, photonics and IT engineering. The main research task for mechatronics is development and control of advanced hybrid systems covering all these fields and supported by interdisciplinary studies. This book presents recent state of advances in mechatronics presented on the 7th International Conference Mechatronics 2007, hosted at the Faculty of Mechatronics, Warsaw University of Technology, Poland. The chosen topics of the conference included: Nanotechnology, Automatic Control and Robotics, Biomedical Engineering, Design Manufacturing and Testing of MEMS, Metrology, Photonics, Mechatronic Products. The selected papers give an overview of the state-of-the-art and present new research results and prospects of the future development in this interdisciplinary field of mechatronic systems. This book will provide up-to-date and useful knowledge for researchers and engineers involved in mechatronics and related fields.
This book gives a unified treatment of classical input-output stability theory and recent developments in nonlinear robust and passivity-based control. The synthesis between these areas is provided by the theory of dissipative systems. Specifically, the small-gain and passivity theorems and their implications for nonlinear stability and stabilization are discussed from this vantage-ground. The connection between L2-gain and passivity via scattering is detailed.The passivity concepts are enriched by a generalised Hamiltonian formalism, emphasizing the close relations with modeling and control by interconnection. Feedback equivalence to a passive system and resulting stabilization strategies are discussed.The potential of L2-gain techniques in nonlinear control is demonstrated, including a compact treatment of the nonlinear H optimal control problem. This book supplies the reader with a succinct, informative summary of a fundamental and rapidly developing area of nonlinear control theory.
System Modeling and Optimization XX deals with new developments in
the areas of optimization, optimal control and system modeling. The
themes range across various areas of optimization: continuous and
discrete, numerical and analytical, finite and infinite
dimensional, deterministic and stochastic, static and dynamic,
theory and applications, foundations and case studies. Besides some
classical topics, modern areas are also presented in the
contributions, including robust optimization, filter methods,
optimization of power networks, data mining and risk control.
The book discusses the recent research trends in various sub-domains of computing, communication and control. It includes research papers presented at the First International Conference on Emerging Trends in Engineering and Science. Focusing on areas such as optimization techniques, game theory, supply chain, green computing, 5g networks, Internet of Things, social networks, power electronics and robotics, it is a useful resource for academics and researchers alike.
Safety critical and high-integrity systems, such as industrial plants and economic systems can be subject to abrupt changes - for instance due to component or interconnection failure, and sudden environment changes etc. Combining probability and operator theory, Discrete-Time Markov Jump Linear Systems provides a unified and rigorous treatment of recent results for the control theory of discrete jump linear systems, which are used in these areas of application. The book is designed for experts in linear systems with Markov jump parameters, but is also of interest for specialists in stochastic control since it presents stochastic control problems for which an explicit solution is possible - making the book suitable for course use. From the reviews: "This text is very well written...it may prove valuable to those who work in the area, are at home with its mathematics, and are interested in stability of linear systems, optimal control, and filtering." Journal of the American Statistical Association, December 2005
'Et moi ..... si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non. The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
System Modeling and Optimization is an indispensable reference for anyone interested in the recent advances in these two disciplines. The book collects, for the first time, selected articles from the 21st and most recent IFIP TC 7 conference in Sophia Antipolis, France. Applied mathematicians and computer scientists can attest to the ever-growing influence of these two subjects. The practical applications of system modeling and optimization can be seen in a number of fields: environmental science, transport and telecommunications, image analysis, free boundary problems, bioscience, and non-cylindrical evolution control, to name just a few. New developments in each of these fields have contributed to a more complex understanding of both system modeling and optimization. Editors John Cagnol and Jean-Paul Zolesio, chairs of the conference, have assembled System Modeling and Optimization to present the most up-to-date developments to professionals and academics alike.
Increasing complexity in engineering projects raises difficult challenges in industry and requires effective tools for correct-by-construction design or design verification. This book addresses the design of such tools for correct-by-construction synthesis of supervisors for systems and specifications represented in the discrete-event framework. The approach employed uses Petri nets as discrete-event models and structural methods for the synthesis of supervisors, and may lead to significant computational benefits.Highlighting recent progress in the design of supervisors by structural methods, the book represents a novel contribution to the field. One of the main features of the presentation is the demonstration that structural methods can address a variety of supervisor specifications under diverse supervision settings. Applications of the methods presented are emphasized by considering various concurrency assumptions and types of system uncontrollability and unobservability. Also considered is the supervision problem for decentralized settings and hybrid dynamical systems. All proposed methods are fully worked-out, ready to use, and formally proven in a sound setting. design are also given. The work is self-contained and includes necessary background on Petri nets and supervision. Requiring only basic knowledge of undergraduate-level discrete mathematics, the text is accessible to a broad audience. Researchers and developers from various engineering fields may find effective means to reduce the complexity of design problems in the discrete-event setting. Graduate students may use the work as a self-study reference, and portions of the text may be used in advanced courses on discrete-event systems.
This book presents applications of Newton-like and other similar methods to solve abstract functional equations involving fractional derivatives. It focuses on Banach space-valued functions of a real domain - studied for the first time in the literature. Various issues related to the modeling and analysis of fractional order systems continue to grow in popularity, and the book provides a deeper and more formal analysis of selected issues that are relevant to many areas - including decision-making, complex processes, systems modeling and control - and deeply embedded in the fields of engineering, computer science, physics, economics, and the social and life sciences. The book offers a valuable resource for researchers and graduate students, and can also be used as a textbook for seminars on the above-mentioned subjects. All chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references.
A spherical actuator is a novel electric device that can achieve 2/3-DOF rotational motions in a single joint with electric power input. It has advantages such as compact structure, low mass/moment of inertia, fast response and non-singularities within the workspace. It has promising applications in robotics, automobile, manufacturing, medicine and aerospace industry. This is the first monograph that introduces the research on spherical actuators systematically. It broadens the scope of actuators from conventional single-axis to multi-axis, which will help both beginners and researchers to enhance their knowledge on electromagnetic actuators. Generic analytic modeling methods for magnetic field and torque output are developed, which can be applied to the development of other electromagnetic actuators. A parametric design methodology that allows fast analysis and design of spherical actuators for various applications is proposed. A novel non-contact high-precision 3-DOF spherical motion sensing methodology is developed and evaluated with experiments, which shows that it can achieve one order of magnitude higher precision than conventional methods. The technologies of nondimensionalization and normalization are introduced into magnetic field analysis the first time, and a benchmark database is established for the reference of other researches on spherical actuators.
This book presents comprehensive information on the relay auto-tuning method for unstable systems in process control industries, and introduces a new, refined Ziegler-Nichols method for designing controllers for unstable systems. The relay auto-tuning method is intended to assist graduate students in chemical, electrical, electronics and instrumentation engineering who are engaged in advanced process control. The book's main focus is on developing a controller tuning method for scalar and multivariable systems, particularly for unstable processes. It proposes a much simpler technique, avoiding the shortcomings of the popular relay-tuning method. The effects of higher-order harmonics are incorporated, owing to the shape of output waveforms. In turn, the book demonstrates the applicability and effectiveness of the Ziegler-Nichols method through simulations on a number of linear and non-linear unstable systems, confirming that it delivers better performance and robust stability in the presence of uncertainty. The proposed method can also be easily implemented across industries with the help of various auto-tuners available on the market. Offering a professional and modern perspective on profitably and efficiently automating controller tuning, the book will be of interest to graduate students, researchers, and industry professionals alike.
Loosely speaking, adaptive systems are designed to deal with, to adapt to, chang ing environmental conditions whilst maintaining performance objectives. Over the years, the theory of adaptive systems evolved from relatively simple and intuitive concepts to a complex multifaceted theory dealing with stochastic, nonlinear and infinite dimensional systems. This book provides a first introduction to the theory of adaptive systems. The book grew out of a graduate course that the authors taught several times in Australia, Belgium, and The Netherlands for students with an engineering and/or mathemat ics background. When we taught the course for the first time, we felt that there was a need for a textbook that would introduce the reader to the main aspects of adaptation with emphasis on clarity of presentation and precision rather than on comprehensiveness. The present book tries to serve this need. We expect that the reader will have taken a basic course in linear algebra and mul tivariable calculus. Apart from the basic concepts borrowed from these areas of mathematics, the book is intended to be self contained."
The impact of control system design on ship performance has been significant in different applications of ship motion control: course keeping, station keeping, roll stabilisation and vertical motion/riding control, diving, path following, etc. This monograph introduces ship motion control by studying the particular problems of control system design for course autopilots with rudder roll stabilisation and combined ruddera "fin stabilisers. Ship Motion Control revisits the ingredients that make these control designs challenging and proposes a contemporary control system design approach to meet that challenge. The key ingredients for a successful ship motion control system design are:
The book is organised in four parts, the first three dealing with each of these and the fourth part addressing control system design. Specific topics covered include:
Ship Motion Control willbe of interest not only to the practising marine engineer but to the academic engaged in research into this important control problem, even if new to the area. It will also be an ideal source of reference for students and tutors involved with marine and control engineering courses.
Can psychoanalysis offer a new computer model? Can computer designers help psychoanalysts to understand their theory better?In contemporary publications human psyche is often related to neural networks. Why? The wiring in computers can also be related to application software. But does this really make sense? Artificial Intelligence has tried to implement functions of human psyche. The reached achievements are remarkable; however, the goal to get a functional model of the mental apparatus was not reached. Was the selected direction incorrect?The editors are convinced: yes, and they try to give answers here. If one accepts that the brain is an information processing system, then one also has to accept that computer theories can be applied to the brain s functions, the human mental apparatus. The contributors of this book - Solms, Panksepp, Sloman and many others who are all experts in computer design, psychoanalysis and neurology are united in one goal: finding synergy in their interdisciplinary fields."
This book of proceedings includes papers presenting the state of art in electrical engineering and control theory as well as their applications. The topics focus on classical as well as modern methods for modeling, control, identification and simulation of complex systems with applications in science and engineering. The papers were selected from the hottest topic areas, such as control and systems engineering, renewable energy, faults diagnosis-faults tolerant control, large-scale systems, fractional order systems, unconventional algorithms in control engineering, signals and communications. The control and design of complex systems dynamics, analysis and modeling of its behavior and structure is vitally important in engineering, economics and in science generally science today. Examples of such systems can be seen in the world around us and are a part of our everyday life. Application of modern methods for control, electronics, signal processing and more can be found in our mobile phones, car engines, home devices like washing machines is as well as in such advanced devices as space probes and systems for communicating with them. All these technologies are part of technological backbone of our civilization, making further research and hi-tech applications essential. The rich variety of contributions appeals to a wide audience, including researchers, students and academics.
Modelling and Control of Mini-Flying Machines is an exposition of models developed to assist in the motion control of various types of mini-aircraft: * Planar Vertical Take-off and Landing aircraft; * helicopters; * quadrotor mini-rotorcraft; * other fixed-wing aircraft; * blimps. For each of these it propounds: * detailed models derived from Euler-Lagrange methods; * appropriate nonlinear control strategies and convergence properties; * real-time experimental comparisons of the performance of control algorithms; * review of the principal sensors, on-board electronics, real-time architecture and communications systems for mini-flying machine control, including discussion of their performance; * detailed explanation of the use of the Kalman filter to flying machine localization. To researchers and students in nonlinear control and its applications Modelling and Control of Mini-Flying Machines provides valuable insights to the application of real-time nonlinear techniques in an always challenging area.
We live in an ever complex, dynamic and technological-based world. A world where industries, businesses and agencies rely ever increasingly on automated systems to maintain efficiency, increase productivity, minimize human error or gain a competitive edge. Moreover, automation is now seen by many organizations as the solution to human performance problems. These organizations continue to invest significant resources to implement automated systems wherever possible and there is no doubt that automation has helped such organizations manage their sophisticated, information-rich environments, where humans have limited capabilities. Therefore, automation has helped to improve industrial and commercial progress to the extent that organizations now depend upon it for their own benefit. However, new and unresolved problems have arisen as more individuals, groups and teams interact with automated systems. Hence, the need and motivation of this volume. The chapters contained in this volume explore some of the key human performance issues facing organizations as they implement or manage automated systems. Dealing with a range of topics, from how to design optional use, avoiding misuse, to creating training strategies for automated systems, this volume also explores which theories may help us understand automation better and what research needs to be conducted. This publication attempts to illustrate how human performance research on automation can help organizations design better systems and also hopes to motivate more theoretically-based but practically-relevant research in the technological-based world of the 21st century.
A discussion of challenges related to the modeling and control of greenhouse crop growth, this book presents state-of-the-art answers to those challenges. The authors model the subsystems involved in successful greenhouse control using different techniques and show how the models obtained can be exploited for simulation or control design; they suggest ideas for the development of physical and/or black-box models for this purpose. Strategies for the control of climate- and irrigation-related variables are brought forward. The uses of PID control and feedforward compensators, both widely used in commercial tools, are summarized. The benefits of advanced control techniques-event-based, robust, and predictive control, for example-are used to improve on the performance of those basic methods. A hierarchical control architecture is developed governed by a high-level multiobjective optimization approach rather than traditional constrained optimization and artificial intelligence techniques. Reference trajectories are found for diurnal and nocturnal temperatures (climate-related setpoints) and electrical conductivity (fertirrigation-related setpoints). The objectives are to maximize profit, fruit quality, and water-use efficiency, these being encouraged by current international rules. Illustrative practical results selected from those obtained in an industrial greenhouse during the last eight years are shown and described. The text of the book is complemented by the use of illustrations, tables and real examples which are helpful in understanding the material. Modeling and Control of Greenhouse Crop Growth will be of interest to industrial engineers, academic researchers and graduates from agricultural, chemical, and process-control backgrounds.
This book focuses on the framework and implementation of energy integration systems with energy and smart-control technologies. It describes in detail We-Energy, a novel energy interaction mode based on a cyber-physical-economy-energy model, which can be adopted to solve the problem of energy supply and utilization. It then analyzes the key devices and technologies for developing the Energy Internet, such as converters, energy-conversion devices, system-level connection devices, optimization control strategies, cyber-physical system security, energy-system stability, communication technologies' operating modes and distributed optimization algorithms, to enable readers to gain a comprehensive understanding of the topic. Lastly, it offers an outlook on the development of the Energy Internet, providing a reference for cross-integration between different disciplines. The book is an indispensable resource for power enterprises, manufacturers in the power-supply industry, and researchers in the field of Energy Internet application. It is also useful for university and college teachers and students seeking to deepen their understanding of the Energy Internet, as well as for readers interested in the Energy Internet correlation techniques.
Adaptive Structural Systems with Piezoelectric Transducer Circuitry provides a comprehensive discussion on the integration of piezoelectric transducers with electrical circuitry for the development and enhancement of adaptive structural systems. Covering a wide range of interdisciplinary research, this monograph presents a paradigm of taking full advantage of the two-way electro-mechanical coupling characteristics of piezoelectric transducers for structural control and identification in adaptive structural systems. Presenting descriptions of algorithm development, theoretical analysis and experimental investigation, engineers and researchers alike will find this a valuable reference.
In this book, the state-of-the-art fuzzy-model-based (FMB) based control approaches are covered. A comprehensive review about the stability analysis of type-1 and type-2 FMB control systems using the Lyapunov-based approach is given, presenting a clear picture to researchers who would like to work on this field. A wide variety of continuous-time nonlinear control systems such as state-feedback, switching, time-delay and sampled-data FMB control systems, are covered. In short, this book summarizes the recent contributions of the authors on the stability analysis of the FMB control systems. It discusses advanced stability analysis techniques for various FMB control systems, and founds a concrete theoretical basis to support the investigation of FMB control systems at the research level. The analysis results of this book offer various mathematical approaches to designing stable and well-performed FMB control systems. Furthermore, the results widen the applicability of the FMB control approach and help put the fuzzy controller in practice. A wide range of advanced analytical and mathematical analysis techniques will be employed to investigate the system stability and performance of FMB-based control systems in a rigorous manner. Detailed analysis and derivation steps are given to enhance the readability, enabling the readers who are unfamiliar with the FMB control systems to follow the materials easily. Simulation examples, with figures and plots of system responses, are given to demonstrate the effectiveness of the proposed FMB control approaches. |
You may like...
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Design of Feedback Control Systems
Raymond T. Stefani, Bahram Shahian, …
Hardcover
R6,540
Discovery Miles 65 400
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
Rapid Automation - Concepts…
Information Reso Management Association
Hardcover
R9,395
Discovery Miles 93 950
Recent Developments in Automatic Control…
Yuriy P. Kondratenko, Vsevolod M. Kuntsevich, …
Hardcover
R3,122
Discovery Miles 31 220
|