![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > General
This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analysis, robust controller design, and robust filter design for the considered systems. Solutions to the design problems are presented in terms of LMIs. The book is a timely reflection of the developing area of filtering and control theories for Markovian jump hybrid systems with various kinds of imperfect information. It is a collection of a series of latest research results and therefore serves as a useful textbook for senior and/or graduate students who are interested in knowing 1) the state-of-the-art of linear filtering and control areas, and 2) recent advances in stochastic jump hybrid systems. The readers will also benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
Artificial Intelligence for Capital Market throws light on application of AI/ML techniques in the financial capital markets. This book discusses the challenges posed by the AI/ML techniques as these are prone to "black box" syndrome. The complexity of understanding the underlying dynamics for results generated by these methods is one of the major concerns which is highlighted in this book: Features: Showcases artificial intelligence in finance service industry Explains Credit and Risk Analysis Elaborates on cryptocurrencies and blockchain technology Focuses on optimal choice of asset pricing model Introduces Testing of market efficiency and Forecasting in Indian Stock Market This book serves as a reference book for Academicians, Industry Professional, Traders, Finance Mangers and Stock Brokers. It may also be used as textbook for graduate level courses in financial services and financial Analytics.
Ethics and Human Behaviour in ICT Development discusses ethics in a professional context and encourages readers to self-assessment of their own behaviour. It provides thought-provoking accounts of the little-known early history of technological development in information and communication technology (ICT) and the automation industry in Poland, with a focus on Wroclaw. The book provides a framework for understanding the relationship between ethics and behaviour, and analyses critically ethical and behavioural issues in challenging workplaces and social contexts. It includes: case studies from around the world, especially Poland, which illustrate the relationships between human behaviour and ethics; biographies of successful Polish ICT and automation leading designers; analysis of case studies of human behaviour and ethics in challenging industrial development and other environments; and illustrative practical applications alongside the theory of human behaviour and ethics. The authors demonstrate the ingenuity of the early Polish designers, programmers and other specialists in overcoming the shortage of components caused by import embargoes to enable Poland to develop its own computer industry. An example of this is Elwro, formerly the largest manufacturer of computers in Poland. The discussion of its growth illustrates the potential of human creativity to overcome problems. The discussion of its fall highlights the importance of ethical approaches to technology transfer and the dangers of a colonialist mentality. The book is designed for engineers, computer scientists, researchers and professionals alike, as well as being of interest for those broadly concerned with ethics and human behaviour.
This volume contains the Proceedings of the First International Congress for the Advancement of Mechanism, Machine, Robotics and Mechatronics Sciences (ICAMMRMS-2017), held in Beirut, Lebanon, October 2017. The book consists of twenty papers in six different fields covering multiple angles of machine and robotics sciences: mechanical design, control, structural synthesis, vibration study, and manufacturing. This volume is of interest to mechanical as well as electrical engineers.
This book makes the area of integration of renewable energy into the existing electricity grid accessible to engineers and researchers. This is a self-contained text which has models of power system devices and control theory necessary to understand and tune controllers in use currently. The new research in renewable energy integration is put into perspective by comparing the change in the system dynamics as compared to the traditional electricity grid. The emergence of the voltage stability problem is motivated by extensive examples. Various methods to mitigate this problem are discussed bringing out their merits clearly. As a solution to the voltage stability problem, the book covers the use of FACTS devices and basic control methods. An important contribution of this book is to introduce advanced control methods for voltage stability. It covers the application of output feedback methods with a special emphasis on how to bound modelling uncertainties and the use of robust control theory to design controllers for practical power systems. Special emphasis is given to designing controllers for FACTS devices to improve low-voltage ride-through capability of induction generators. As generally PV is connected in low voltage distribution area, this book also provides a systematic control design for the PV unit in distribution systems. The theory is amply illustrated with large IEEE Test systems with multiple generators and dynamic load. Controllers are designed using Matlab and tested using full system models in PSSE.
Research on humanoid robots has been mostly with the aim of developing robots that can replace humans in the performance of certain tasks. Motion planning for these robots can be quite difficult, due to their complex kinematics, dynamics and environment. It is consequently one of the key research topics in humanoid robotics research and the last few years have witnessed considerable progress in the field. Motion Planning for Humanoid Robots surveys the remarkable recent advancement in both the theoretical and the practical aspects of humanoid motion planning. Various motion planning frameworks are presented in Motion Planning for Humanoid Robots, including one for skill coordination and learning, and one for manipulating and grasping tasks. The problem of planning sequences of contacts that support acyclic motion in a highly constrained environment is addressed and a motion planner that enables a humanoid robot to push an object to a desired location on a cluttered table is described. The main areas of interest include: * whole body motion planning, * task planning, * biped gait planning, and * sensor feedback for motion planning. Torque-level control of multi-contact behavior, autonomous manipulation of moving obstacles, and movement control and planning architecture are also covered. Motion Planning for Humanoid Robots will help readers to understand the current research on humanoid motion planning. It is written for industrial engineers, advanced undergraduate and postgraduate students.
One of the most important methods in dealing with the optimization of large, complex systems is that of hierarchical decomposition. The idea is to reduce the overall complex problem into manageable approximate problems or subproblems, to solve these problems, and to construct a solution of the original problem from the solutions of these simpler prob lems. Development of such approaches for large complex systems has been identified as a particularly fruitful area by the Committee on the Next Decade in Operations Research (1988) [42] as well as by the Panel on Future Directions in Control Theory (1988) [65]. Most manufacturing firms are complex systems characterized by sev eral decision subsystems, such as finance, personnel, marketing, and op erations. They may have several plants and warehouses and a wide variety of machines and equipment devoted to producing a large number of different products. Moreover, they are subject to deterministic as well as stochastic discrete events, such as purchasing new equipment, hiring and layoff of personnel, and machine setups, failures, and repairs.
Mechatronics is a synergic discipline integrating precise mechanics, electrotechnics, electronics and IT technologies. The main goal of mechatronical approach to design of complex products is to achieve new quality of their utility value at reasonable price. Successful accomplishment of this task would not be possible without application of advanced software and hardware tools for simulation of design, technologies and production control and also for simulation of behavior of these products in order to provide the highest possible level of spatial and functional integration of the final product. This book brings a review of the current state of the art in mechatronics, as presented at the 8th International Conference Mechatronics 2009, organized by the Brno Technical University, Faculty of Mechanical Engineering, Czech Republic. The specific topics of the conference are Modelling and Simulation, Metrology & Diagnostics, Sensorics & Photonics, Control & Robotics, MEMS Design & Mechatronic Products, Production Machines and Biomechanics. The selected contributions provide an insight into the current development of these scientific disciplines, present the new results of research and development and indicate the trends of development in the interdisciplinary field of mechatronic systems. Therefore, the book provides the latest and helpful information both for the R&D specialists and for the designers working in mechatronics and related fields.
In the research area of computer science, practitioners are constantly searching for faster platforms with pertinent results. With analytics that span environmental development to computer hardware emulation, problem-solving algorithms are in high demand. Field-Programmable Gate Array (FPGA) is a promising computing platform that can be significantly faster for some applications and can be applied to a variety of fields. FPGA Algorithms and Applications in the IoT, AI, and High-Performance Computing provides emerging research exploring the theoretical and practical aspects of computable algorithms and applications within robotics and electronics development. Featuring coverage on a broad range of topics such as neuroscience, bioinformatics, and artificial intelligence, this book is ideally designed for computer science specialists, researchers, professors, and students seeking current research on cognitive analytics and advanced computing.
This monograph presents and analyzes the optimization, game-theoretic and simulation models of control mechanisms for ecological-economic systems. It is devoted to integrated assessment mechanisms for total risks and losses, penalty mechanisms, risk payment mechanisms, financing and costs compensation mechanisms for risk level reduction, sales mechanisms for risk level quotas, audit mechanisms, mechanisms for expected losses reduction, economic motivation mechanisms, optimization mechanisms for regional environmental (risk level reduction) programs, and mechanisms for authorities' interests coordination. The book is aiming at undergraduate and postgraduate students, as well as at experts in mathematical modeling and control of ecological economic, socioeconomic and organizational systems.
Presents a number of new and potentially useful self-learning (adaptive) control algorithms and theoretical as well as practical results for both unconstrained and constrained finite Markov chains-efficiently processing new information by adjusting the control strategies directly or indirectly.
Advances in H Control Theory is concerned with state-of-the-art developments in three areas: the extended treatment of mostly deterministic switched systems with dwell-time; the control of retarded stochastic state-multiplicative noisy systems; and a new approach to the control of biochemical systems, exemplified by the threonine synthesis and glycolytic pathways. Following an introduction and extensive literature survey, each of these major topics is the subject of an individual part of the book. The first two parts of the book contain several practical examples taken from various fields of control engineering including aircraft control, robot manipulation and process control. These examples are taken from the fields of deterministic switched systems and state-multiplicative noisy systems. The text is rounded out with short appendices covering mathematical fundamentals: -algebra and the input-output method for retarded systems. Advances in H Control Theory is written for engineers engaged in control systems research and development, for applied mathematicians interested in systems and control and for graduate students specializing in stochastic control.
This book presents a foray into the fascinating process of risk management, beginning from classical methods and approaches to understanding risk all the way into cutting-age thinking. Risk management by necessity must lie at the heart of governing our ever more complex digital societies. New phenomena and activities necessitate a new look at how individuals, firms, and states manage the uncertainty they must operate in. Initial chapters provide an introduction to traditional methods and show how they can be built upon to better understand the workings of the modern economy. Later chapters review digital activities and assets like cryptocurrencies showing how such emergent risks can be conceptualized better. Network theory figures prominently and the book demonstrates how it can be used to gauge the risk in the digital sectors of the economy. Predicting the unpredictable black swan events is also discussed in view of a wider adoption of economic simulations. The journey concludes by looking at how individuals perceive risk and make decisions as they operate in a virtual social network. This book interests the academic audience, but it also features insights and novel research results that are relevant for practitioners and policymakers.
How do preprocessing steps such as tokenization, stemming, and removing stop words affect predictive models? Build beginning-to-end workflows for predictive modeling using text as features Compare traditional machine learning methods and deep learning methods for text data
Most applications generate large datasets, like social networking and social influence programs, smart cities applications, smart house environments, Cloud applications, public web sites, scientific experiments and simulations, data warehouse, monitoring platforms, and e-government services. Data grows rapidly, since applications produce continuously increasing volumes of both unstructured and structured data. Large-scale interconnected systems aim to aggregate and efficiently exploit the power of widely distributed resources. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance and to create a smart environment. The impact on data processing, transfer and storage is the need to re-evaluate the approaches and solutions to better answer the user needs. A variety of solutions for specific applications and platforms exist so a thorough and systematic analysis of existing solutions for data science, data analytics, methods and algorithms used in Big Data processing and storage environments is significant in designing and implementing a smart environment. Fundamental issues pertaining to smart environments (smart cities, ambient assisted leaving, smart houses, green houses, cyber physical systems, etc.) are reviewed. Most of the current efforts still do not adequately address the heterogeneity of different distributed systems, the interoperability between them, and the systems resilience. This book will primarily encompass practical approaches that promote research in all aspects of data processing, data analytics, data processing in different type of systems: Cluster Computing, Grid Computing, Peer-to-Peer, Cloud/Edge/Fog Computing, all involving elements of heterogeneity, having a large variety of tools and software to manage them. The main role of resource management techniques in this domain is to create the suitable frameworks for development of applications and deployment in smart environments, with respect to high performance. The book focuses on topics covering algorithms, architectures, management models, high performance computing techniques and large-scale distributed systems.
This book focuses on green computing-based network security techniques and addresses the challenges involved in practical implementation. It also explores the idea of energy-efficient computing for network and data security and covers the security threats involved in social networks, data centers, IoT, and biomedical applications. Green Computing in Network Security: Energy Efficient Solutions for Business and Home includes analysis of green-security mechanisms and explores the role of green computing for secured modern internet applications. It discusses green computing-based distributed learning approaches for security and emphasizes the development of green computing-based security systems for IoT devices. Written with researchers, academic libraries, and professionals in mind so they can get up to speed on network security, the challenges, and implementation processes.
This monograph focuses on characterizing the stability and performance consequences of inserting limited-capacity communication networks within a control loop. The text shows how integration of the ideas of control and estimation with those of communication and information theory can be used to provide important insights concerning several fundamental problems such as: * minimum data rate for stabilization of linear systems over noisy channels; * minimum network requirement for stabilization of linear systems over fading channels; and * stability of Kalman filtering with intermittent observations. A fundamental link is revealed between the topological entropy of linear dynamical systems and the capacities of communication channels. The design of a logarithmic quantizer for the stabilization of linear systems under various network environments is also extensively discussed and solutions to many problems of Kalman filtering with intermittent observations are demonstrated. Analysis and Design of Networked Control Systems will interest control theorists and engineers working with networked systems and may also be used as a resource for graduate students with backgrounds in applied mathematics, communications or control who are studying such systems.
Production costs are being reduced by automation, robotics, computer-integrated manufacturing, cost reduction studies and more. These new technologies are expensive to buy, repair, and maintain. Hence, the demand on maintenance is growing and its costs are escalating. This new environment is compelling industrial maintenance organizations to make the transition from fixing broken machines to higher-level business units for securing production capacity. On the academic front, research in the area of maintenance management and engineering is receiving tremendous interest from researchers. Many papers have appeared in the literature dealing with the modeling and solution of maintenance problems using operations research (OR) and management science (MS) techniques. This area represents an opportunity for making significant contributions by the OR and MS communities. Maintenance, Modeling, and Optimization provides in one volume the latest developments in the area of maintenance modeling. Prominent scholars have contributed chapters covering a wide range of topics. We hope that this initial contribution will serve as a useful informative introduction to this field that may permit additional developments and useful directions for more research in this fast-growing area. The book is divided into six parts and contains seventeen chapters. Each chapter has been subject to review by at least two experts in the area of maintenance modeling and optimization. The first chapter provides an introduction to major maintenance modeling areas illustrated with some basic models. Part II contains five chapters dealing with maintenance planning and scheduling. Part III deals with preventive maintenance in six chapters. Part IV focuses on condition-based maintenance and contains two chapters. Part V deals with integrated production and maintenance models and contains two chapters. Part VI addresses issues related to maintenance and new technologies, and also deals with Just-in-Time (JIT) and Maintenance.
Quantitative Feedback Design of Linear and Nonlinear Control Systems is a self-contained book dealing with the theory and practice of Quantitative Feedback Theory (QFT). The author presents feedback synthesis techniques for single-input single-output, multi-input multi-output linear time-invariant and nonlinear plants based on the QFT method. Included are design details and graphs which do not appear in the literature, which will enable engineers and researchers to understand QFT in greater depth. Engineers will be able to apply QFT and the design techniques to many applications, such as flight and chemical plant control, robotics, space, vehicle and military industries, and numerous other uses. All of the examples were implemented using MatlabA(R) Version 5.3; the script file can be found at the author's Web site. QFT results in efficient designs because it synthesizes a controller for the exact amount of plant uncertainty, disturbances and required specifications. Quantitative Feedback Design of Linear and Nonlinear Control Systems is a pioneering work that illuminates QFT, making the theory - and practice - come alive.
This book is intended to be an exhaustive study on regularity and other properties of continuity for different types of non-additive multimeasures and with respect to different types of topologies. The book is addressed to graduate and postgraduate students, teachers and all researchers in mathematics, but not only. Since the notions and results offered by this book are closely related to various notions of the theory of probability, this book will be useful to a wider category of readers, using multivalued analysis techniques in areas such as control theory and optimization, economic mathematics, game theory, decision theory, etc. Measure and integration theory developed during the early years of the 20th century is one of the most important contributions to modern mathematical analysis, with important applications in many fields. In the last years, many classical problems from measure theory have been treated in the non-additive case and also extended in the set-valued case. The property of regularity is involved in many results of mathematical analysis, due to its applications in probability theory, stochastic processes, optimal control problems, dynamical systems, Markov chains, potential theory etc.
Predictive control is a powerful tool in dealing with those processes with large time delays. Generalized Predictive Control (GPC) is the most popular approach to the subject, and this text discusses the application of GPC starting with the concept of long-range predictive control and its need in medicine (particularly automated drug deliveries). The concept of adaptation is also emphasized with respect to patient-to-patient parameter variations. Subsequent chapters discuss interactions, comparisons and various aspects of GPC. The book concludes by putting into perpective the generic nature of the architecture built around GPC and which provides model-based fault diagnosis with control.
Derived from industry-training classes that the author teaches at the Embedded Systems Institute at Eindhoven, the Netherlands and at Buskerud University College at Kongsberg in Norway, Systems Architecting: A Business Perspective places the processes of systems architecting in a broader context by juxtaposing the relationship of the systems architect with enterprise and management. This practical, scenario-driven guide fills an important gap, providing systems architects insight into the business processes, and especially into the processes to which they actively contribute. The book uses a simple reference model to enable understanding of the inside of a system in relation to its context. It covers the impact of tool selection and brings balance to the application of the intellectual tools versus computer-aided tools. Stressing the importance of a clear strategy, the authors discuss methods and techniques that facilitate the architect's contribution to the strategy process. They also give insight into the needs and complications of harvesting synergy, insight that will help establish an effective synergy-harvesting strategy. The book also explores the often difficult relationship between managers and systems architects. Written in an approachable style, the book discusses the breadth of the human sciences and their relevance to systems architecting. It highlights the relevance of human aspects to systems architects, linking theory to practical experience when developing systems architecting competence.
The contributions for this book have been gathered over several years from conferences held in the series of Mechatronics and Machine Vision in Practice, the latest of which was held in Ankara, Turkey. The essential aspect is that they concern practical applications rather than the derivation of mere theory, though simulations and visualization are important components. The topics range from mining, with its heavy engineering, to the delicate machining of holes in the human skull or robots for surgery on human flesh. Mobile robots continue to be a hot topic, both from the need for navigation and for the task of stabilization of unmanned aerial vehicles. The swinging of a spray rig is damped, while machine vision is used for the control of heating in an asphalt-laying machine. Manipulators are featured, both for general tasks and in the form of grasping fingers. A robot arm is proposed for adding to the mobility scooter of the elderly. Can EEG signals be a means to control a robot? Can face recognition be achieved in varying illumination?"
Hidenori Kimura, renowned system and control theorist, turned 60 years of age in November, 2001. To celebrate this memorable occasion, his friends, collaborators, and former students gathered from all over the world and held a symposium in his honor on November 1 and 2, 2001, at the Sanjo Conference Hall at the University of Tokyo. Reflecting his current research interests, the symposium was entitled "Cybernetics in the 21st Century: Information and Complexity in Control Theory," and it drew nearly 150 attendees. There were twenty-five lectures, on which the present volume is based. Hidenori Kimura was born on November 3, 1941, in Tokyo, just prior to the outbreak of the Second World War. It is not hard to imagine, then, that his early days, like those of so many of his contemporaries, must have been difficult. Fortunately, the war ended in 1945, and his generation found itself thoroughly occupied with the rebuilding effort and with Japan's uphill journey in the last half-century. He entered the University of Tokyo in 1963, received a B. S. in 1965, an M. S. in 1967, and, in 1970, a Ph. D. degree for his dissertation "A Study of Differential Games. " After obtaining his doctorate, he joined the Department of Control En gineering at Osaka University as a research associate, and in 1973 he was promoted to an associate professor." |
You may like...
Control of Complex Systems - Theory and…
Kyriakos Vamvoudakis, Sarangapani Jagannathan
Hardcover
Model-Based Control Engineering - Recent…
Umar Zakir Abdul Hamid, Ahmad Athif Mohd Faudzi
Hardcover
R3,051
Discovery Miles 30 510
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
|