Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Geometry
Ten years after a 1989 meeting of number theorists and physicists at the Centre de Physique des Houches, a second event focused on the broader interface of number theory, geometry, and physics. This book is the first of two volumes resulting from that meeting. Broken into three parts, it covers Conformal Field Theories, Discrete Groups, and Renormalization, offering extended versions of the lecture courses and shorter texts on special topics.
The book serves as an introduction to holomorphic curves in symplectic manifolds, focusing on the case of four-dimensional symplectizations and symplectic cobordisms, and their applications to celestial mechanics. The authors study the restricted three-body problem using recent techniques coming from the theory of pseudo-holomorphic curves. The book starts with an introduction to relevant topics in symplectic topology and Hamiltonian dynamics before introducing some well-known systems from celestial mechanics, such as the Kepler problem and the restricted three-body problem. After an overview of different regularizations of these systems, the book continues with a discussion of periodic orbits and global surfaces of section for these and more general systems. The second half of the book is primarily dedicated to developing the theory of holomorphic curves - specifically the theory of fast finite energy planes - to elucidate the proofs of the existence results for global surfaces of section stated earlier. The book closes with a chapter summarizing the results of some numerical experiments related to finding periodic orbits and global surfaces of sections in the restricted three-body problem. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
This volume contains the Proceedings of the Special Seminar on: FRAGTALS held from October 9-15, 1988 at the Ettore Majorana Centre for Scientific Culture, Erice (Trapani), Italy. The concepts of self-similarity and scale invariance have arisen independently in several areas. One is the study of critical properites of phase transitions; another is fractal geometry, which involves the concept of (non-integer) fractal dimension. These two areas have now come together, and their methods have extended to various fields of physics. The purpose of this Seminar was to provide an overview of the recent developments in the field. Most of the contributions are theoretical, but some experimental work is also included. Du: cing the past few years two tendencies have emerged in this field: one is to realize that many phenomena can be naturally modelled by fractal structures. So one can use this concept to define simple modele and study their physical properties. The second point of view is more microscopic and tries to answer the question: why nature gives rise to fractal structures. This implies the formulation of fractal growth modele based on physical concepts and their theoretical understanding in the same sense as the Renormalization Group method has allowed to understand the critical properties of phase transitions
An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Geometry: A Metric Approach with Models, imparts a real feeling for Euclidean and non-Euclidean (in particular, hyperbolic) geometry. Intended as a rigorous first course, the book introduces and develops the various axioms slowly, and then, in a departure from other texts, continually illustrates the major definitions and axioms with two or three models, enabling the reader to picture the idea more clearly. The second edition has been expanded to include a selection of expository exercises. Additionally, the authors have designed software with computational problems to accompany the text. This software may be obtained from George Parker.
This volume is the proceedings of a conference held at Ohio State University in May of 1999. Over sixty mathematicians from around the world participated in this conference and principal lectures were given by some of the most distinguished experts in the field. The proceedings volume contains fully refereed research articles from some of the principal speakers, including: Salah Baouendi (UCSD), David Barrett (Univ. Michigan), Bo Berndtsson (Goteborg), David Catlin (Purdue Univ.), Micheal Christ (Berkeley), John D'Angelo (Univ. Illinois), Xiaojun Huang (Rutgers), J. J. Kohn (Princeton), Y.-T. Siu (Harvard), and Emil Straube (Texas A & M).
Incidence geometry is a central part of modern mathematicsthat has an impressive tradition. The main topics of incidence geometry are projective and affine geometry and, in more recent times, the theory of buildings and polar spaces. Embedded into the modern view of diagram geometry, projective and affine geometry including the fundamental theorems, polar geometry including the Theorem of Buekenhout-Shult and the classification of quadratic sets are presented in this volume. Incidence geometry is developed along the lines of the fascinating work of Jacques Tits and Francis Buekenhout. The book is a clear and comprehensible introduction into a wonderful piece of mathematics. More than 200 figures make even complicated proofs accessible to the reader."
The basics of the theory of elliptic curves should be known to everybody, be he (or she) a mathematician or a computer scientist. Especially everybody concerned with cryptography should know the elements of this theory. The purpose of the present textbook is to give an elementary introduction to elliptic curves. Since this branch of number theory is particularly accessible to computer-assisted calculations, the authors make use of it by approaching the theory under a computational point of view. Specifically, the computer-algebra package SIMATH can be applied on several occasions. However, the book can be read also by those not interested in any computations. Of course, the theory of elliptic curves is very comprehensive and becomes correspondingly sophisticated. That is why the authors made a choice of the topics treated. Topics covered include the determination of torsion groups, computations regarding the Mordell-Weil group, height calculations, S-integral points. The contents is kept as elementary as possible. In this way it becomes obvious in which respect the book differs from the numerous textbooks on elliptic curves nowadays available.
This book treats that part of Riemannian geometry related to more classical topics in a very original, clear and solid style. Before going to Riemannian geometry, the author presents a more general theory of manifolds with a linear connection. Having in mind different generalizations of Riemannian manifolds, it is clearly stressed which notions and theorems belong to Riemannian geometry and which of them are of a more general nature. Much attention is paid to transformation groups of smooth manifolds. Throughout the book, different aspects of symmetric spaces are treated. The author successfully combines the co-ordinate and invariant approaches to differential geometry, which give the reader tools for practical calculations as well as a theoretical understanding of the subject. The book contains a very useful large Appendix on foundations of differentiable manifolds and basic structures on them which makes it self-contained and practically independent from other sources.
This is the first exposition of the quantization theory of singular symplectic (Marsden-Weinstein) quotients and their applications to physics. The reader will acquire an introduction to the various techniques used in this area, as well as an overview of the latest research approaches. These involve classical differential and algebraic geometry, as well as operator algebras and noncommutative geometry. Thus one will be amply prepared to follow future developments in this field.
Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference "Algebraic and Complex Geometry" held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the first author. It also includes a full list of speakers with all titles and abstracts.
Clear explanations, an uncluttered and appealing layout, and examples and exercises featuring a variety of real-life applications have made this book popular among students year after year. This latest edition of Swokowski and Cole's ALGEBRA AND TRIGONOMETRY WITH ANALYTIC GEOMETRY retains these features. The problems have been consistently praised for being at just the right level for precalculus students. The book also provides calculator examples, including specific keystrokes that show how to use various graphing calculators to solve problems more quickly. Perhaps most important--this book effectively prepares readers for further courses in mathematics.
Working out solutions to polynomial equations is a mathematical problem that dates from antiquity. Galois developed a theory in which the obstacle to solving a polynomial equation is an associated collection of symmetries. Obtaining a root requires "breaking" that symmetry. When the degree of an equation is at least five, Galois Theory established that there is no formula for the solutions like those found in lower degree cases. However, this negative result doesn't mean that the practice of equation-solving ends. In a recent breakthrough, Doyle and McMullen devised a solution to the fifth-degree equation that uses geometry, algebra, and dynamics to exploit icosahedral symmetry. Polynomials, Dynamics, and Choice: The Price We Pay for Symmetry is organized in two parts, the first of which develops an account of polynomial symmetry that relies on considerations of algebra and geometry. The second explores beyond polynomials to spaces consisting of choices ranging from mundane decisions to evolutionary algorithms that search for optimal outcomes. The two algorithms in Part I provide frameworks that capture structural issues that can arise in deliberative settings. While decision-making has been approached in mathematical terms, the novelty here is in the use of equation-solving algorithms to illuminate such problems. Features Treats the topic-familiar to many-of solving polynomial equations in a way that's dramatically different from what they saw in school Accessible to a general audience with limited mathematical background Abundant diagrams and graphics.
Working out solutions to polynomial equations is a mathematical problem that dates from antiquity. Galois developed a theory in which the obstacle to solving a polynomial equation is an associated collection of symmetries. Obtaining a root requires "breaking" that symmetry. When the degree of an equation is at least five, Galois Theory established that there is no formula for the solutions like those found in lower degree cases. However, this negative result doesn't mean that the practice of equation-solving ends. In a recent breakthrough, Doyle and McMullen devised a solution to the fifth-degree equation that uses geometry, algebra, and dynamics to exploit icosahedral symmetry. Polynomials, Dynamics, and Choice: The Price We Pay for Symmetry is organized in two parts, the first of which develops an account of polynomial symmetry that relies on considerations of algebra and geometry. The second explores beyond polynomials to spaces consisting of choices ranging from mundane decisions to evolutionary algorithms that search for optimal outcomes. The two algorithms in Part I provide frameworks that capture structural issues that can arise in deliberative settings. While decision-making has been approached in mathematical terms, the novelty here is in the use of equation-solving algorithms to illuminate such problems. Features Treats the topic-familiar to many-of solving polynomial equations in a way that's dramatically different from what they saw in school Accessible to a general audience with limited mathematical background Abundant diagrams and graphics.
This book expresses the full understanding of Weyl's formula for the volume of a tube, its roots and its implications. Historical notes and Mathematica drawings have been added to this revised second edition. From the reviews: "Will do much to make Weyl's tube formula more accessible to modern readers.... A high point is the presentation of estimates for the volumes of tubes in ambient Riemannian manifolds whose curvature is bounded above or below." --BULLETIN OF THE AMS
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.
Through two previous editions, the third edition of this popular and intriguing text takes both an analytical/theoretical approach and a visual/intuitive approach to the local and global properties of curves and surfaces. Requiring only multivariable calculus and linear algebra, it develops students' geometric intuition through interactive graphics applets. Applets are presented in Maple workbook format, which readers can access using the free Maple Player. The book explains the reasons for various definitions while the interactive applets offer motivation for definitions, allowing students to explore examples further, and give a visual explanation of complicated theorems. The ability to change parametric curves and parametrized surfaces in an applet lets students probe the concepts far beyond what static text permits. Investigative project ideas promote student research. At users of the previous editions' request, this third edition offers a broader list of exercises. More elementary exercises are added and some challenging problems are moved later in exercise sets to assure more graduated progress. The authors also add hints to motivate students grappling with the more difficult exercises. This student-friendly and readable approach offers additional examples, well-placed to assist student comprehension. In the presentation of the Gauss-Bonnet Theorem, the authors provide more intuition and stepping-stones to help students grasp phenomena behind it. Also, the concept of a homeomorphism is new to students even though it is a key theoretical component of the definition of a regular surface. Providing more examples show students how to prove certain functions are homeomorphisms.
This volume presents a collection of results related to the BSD conjecture, based on the first two India-China conferences on this topic. It provides an overview of the conjecture and a few special cases where the conjecture is proved. The broad theme of the two conferences was "Theoretical and Computational Aspects of the Birch and Swinnerton-Dyer Conjecture". The first was held at Beijing International Centre for Mathematical Research (BICMR) in December 2014 and the second was held at the International Centre for Theoretical Sciences (ICTS), Bangalore, India in December 2016. Providing a broad overview of the subject, the book is a valuable resource for young researchers wishing to work in this area. The articles have an extensive list of references to enable diligent researchers to gain an idea of the current state of art on this conjecture.
Tamari lattices originated from weakenings or reinterpretations of the familar associativity law. This has been the subject of Dov Tamari's thesis at the Sorbonne in Paris in 1951 and the central theme of his subsequent mathematical work. Tamari lattices can be realized in terms of polytopes called associahedra, which in fact also appeared first in Tamari's thesis. By now these beautiful structures have made their appearance in many different areas of pure and applied mathematics, such as algebra, combinatorics, computer science, category theory, geometry, topology, and also in physics. Their interdisciplinary nature provides much fascination and value. On the occasion of Dov Tamari's centennial birthday, this book provides an introduction to topical research related to Tamari's work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations.
It isn't that they can't see the solution. It is Approach your problems from the right end and begin with the answers. Then one day, that they can't see the problem perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu ik's The Chillese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Anyone browsing at the stationery store will see an incredible array of pop-up cards available for any occasion. The workings of pop-up cards and pop-up books can be remarkably intricate. Behind such designs lies beautiful geometry involving the intersection of circles, cones, and spheres, the movements of linkages, and other constructions. The geometry can be modelled by algebraic equations, whose solutions explain the dynamics. For example, several pop-up motions rely on the intersection of three spheres, a computation made every second for GPS location. Connecting the motions of the card structures with the algebra and geometry reveals abstract mathematics performing tangible calculations. Beginning with the nephroid in the 19th-century, the mathematics of pop-up design is now at the frontiers of rigid origami and algorithmic computational complexity. All topics are accessible to those familiar with high-school mathematics; no calculus required. Explanations are supplemented by 140+ figures and 20 animations.
Torsors, also known as principal bundles or principal homogeneous spaces, are ubiquitous in mathematics. The purpose of this book is to present expository lecture notes and cutting-edge research papers on the theory and applications of torsors and etale homotopy, all written from different perspectives by leading experts. Part one of the book contains lecture notes on recent uses of torsors in geometric invariant theory and representation theory, plus an introduction to the etale homotopy theory of Artin and Mazur. Part two of the book features a milestone paper on the etale homotopy approach to the arithmetic of rational points. Furthermore, the reader will find a collection of research articles on algebraic groups and homogeneous spaces, rational and K3 surfaces, geometric invariant theory, rational points, descent and the Brauer-Manin obstruction. Together, these give a state-of-the-art view of a broad area at the crossroads of number theory and algebraic geometry.
The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert-Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps).The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appears much later.The present book, consisting of nine chapters, gives complete treatments of the following items: Coherence of sheaves of holomorphic functions (Chap. 2); Oka-Cartan's Fundamental Theorem (Chap. 4); Coherence of ideal sheaves of complex analytic subsets (Chap. 6); Coherence of the normalization sheaves of complex spaces (Chap. 6); Grauert's Finiteness Theorem (Chaps. 7, 8); Oka's Theorem for Riemann domains (Chap. 8). The theories of sheaf cohomology and domains of holomorphy are also presented (Chaps. 3, 5). Chapter 6 deals with the theory of complex analytic subsets. Chapter 8 is devoted to the applications of formerly obtained results, proving Cartan-Serre's Theorem and Kodaira's Embedding Theorem. In Chap. 9, we discuss the historical development of "Coherence".It is difficult to find a book at this level that treats all of the above subjects in a completely self-contained manner. In the present volume, a number of classical proofs are improved and simplified, so that the contents are easily accessible for beginning graduate students. |
You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R553
Discovery Miles 5 530
|