![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. The goal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete them on their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters that contain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications. Some of the noteworthy features of this book include * Diagrammatic illustrations that encourage readers to think geometrically * Focus on systematic strategy to generate ideas for the proofs of theorems * A wealth of remarks, observations along with a variety of exercises * Historical notes and brief biographies appearing throughout the text
Introduction to Recognition and Deciphering of Patterns is meant to acquaint STEM and non-STEM students with different patterns, as well as to where and when specific patterns arise. In addition, the book teaches students how to recognize patterns and distinguish the similarities and differences between them. Patterns, such as weather patterns, traffic patterns, behavioral patterns, geometric patterns, linguistic patterns, structural patterns, digital patterns, and the like, emerge on an everyday basis, . Recognizing patterns and studying their unique traits are essential for the development and enhancement of our intuitive skills and for strengthening our analytical skills. Mathematicians often apply patterns to get acquainted with new concepts--a technique that can be applied across many disciplines. Throughout this book we explore assorted patterns that emerge from various geometrical configurations of squares, circles, right triangles, and equilateral triangles that either repeat at the same scale or at different scales. The book also analytically examines linear patterns, geometric patterns, alternating patterns, piecewise patterns, summation-type patterns and factorial-type patterns. Deciphering the details of these distinct patterns leads to the proof by induction method, and the book will also render properties of Pascal's triangle and provide supplemental practice in deciphering specific patterns and verifying them. This book concludes with first-order recursive relations: describing sequences as recursive relations, obtaining the general solution by solving an initial value problem, and determining the periodic traits. Features * Readily accessible to a broad audience, including those with limited mathematical background * Especially useful for students in non-STEM disciplines, such as psychology, sociology, economics and business, as well as for liberal arts disciplines and art students.
Architecture of Mathematics describes the logical structure of Mathematics from its foundations to its real-world applications. It describes the many interweaving relationships between different areas of mathematics and its practical applications, and as such provides unique reading for professional mathematicians and nonmathematicians alike. This book can be a very important resource both for the teaching of mathematics and as a means to outline the research links between different subjects within and beyond the subject. Features All notions and properties are introduced logically and sequentially, to help the reader gradually build understanding. Focusses on illustrative examples that explain the meaning of mathematical objects and their properties. Suitable as a supplementary resource for teaching undergraduate mathematics, and as an aid to interdisciplinary research. Forming the reader's understanding of Mathematics as a unified science, the book helps to increase his general mathematical culture.
This 4-th edition of the leading reference volume on distance metrics is characterized by updated and rewritten sections on some items suggested by experts and readers, as well a general streamlining of content and the addition of essential new topics. Though the structure remains unchanged, the new edition also explores recent advances in the use of distances and metrics for e.g. generalized distances, probability theory, graph theory, coding theory, data analysis. New topics in the purely mathematical sections include e.g. the Vitanyi multiset-metric, algebraic point-conic distance, triangular ratio metric, Rossi-Hamming metric, Taneja distance, spectral semimetric between graphs, channel metrization, and Maryland bridge distance. The multidisciplinary sections have also been supplemented with new topics, including: dynamic time wrapping distance, memory distance, allometry, atmospheric depth, elliptic orbit distance, VLBI distance measurements, the astronomical system of units, and walkability distance. Leaving aside the practical questions that arise during the selection of a 'good' distance function, this work focuses on providing the research community with an invaluable comprehensive listing of the main available distances. As well as providing standalone introductions and definitions, the encyclopedia facilitates swift cross-referencing with easily navigable bold-faced textual links to core entries. In addition to distances themselves, the authors have collated numerous fascinating curiosities in their Who's Who of metrics, including distance-related notions and paradigms that enable applied mathematicians in other sectors to deploy research tools that non-specialists justly view as arcane. In expanding access to these techniques, and in many cases enriching the context of distances themselves, this peerless volume is certain to stimulate fresh research.
Published in two volumes, this is the first book to provide a thorough and systematic explanation of symplectic topology, and the analytical details and techniques used in applying the machinery arising from Floer theory as a whole. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory, including many examples of their applications to various problems in symplectic topology. The first volume covered the basic materials of Hamiltonian dynamics and symplectic geometry and the analytic foundations of Gromov's pseudoholomorphic curve theory. Symplectic Topology and Floer Homology is a comprehensive resource suitable for experts and newcomers alike.
Alfred Tarski (1901-1983) was a renowned Polish/American mathematician, a giant of the twentieth century, who helped establish the foundations of geometry, set theory, model theory, algebraic logic and universal algebra. Throughout his career, he taught mathematics and logic at universities and sometimes in secondary schools. Many of his writings before 1939 were in Polish and remained inaccessible to most mathematicians and historians until now. This self-contained book focuses on Tarski's early contributions to geometry and mathematics education, including the famous Banach-Tarski paradoxical decomposition of a sphere as well as high-school mathematical topics and pedagogy. These themes are significant since Tarski's later research on geometry and its foundations stemmed in part from his early employment as a high-school mathematics teacher and teacher-trainer. The book contains careful translations and much newly uncovered social background of these works written during Tarski's years in Poland. Alfred Tarski: Early Work in Poland serves the mathematical, educational, philosophical and historical communities by publishing Tarski's early writings in a broadly accessible form, providing background from archival work in Poland and updating Tarski's bibliography. A list of errata can be found on the author Smith's personal webpage.
This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including mu-invariant, L-invariant, and similar topics. This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties. Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader. Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory. Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
The book deals with nonlocal elliptic differential operators. These are operators whose coefficients involve shifts generated by diffeomorphisms of the manifold on which the operators are defined. The main goal of the study is to relate analytical invariants (in particular, the index) of such operators to topological invariants of the manifold itself. This problem can be solved by modern methods of noncommutative geometry. To make the book self-contained, the authors have included necessary geometric material (C*-algebras and their K-theory, cyclic homology, etc.).
'The presentation is modeled on the discursive style of the Bourbaki collective, and the coverage of topics is rich and varied. Grandis has provided a large selection of exercises and has sprinkled orienting comments throughout. For an undergraduate library where strong students seek an overview of a significant portion of mathematics, this would be an excellent acquisition. Summing up: Recommended.'CHOICESince the last century, a large part of Mathematics is concerned with the study of mathematical structures, from groups to fields and vector spaces, from lattices to Boolean algebras, from metric spaces to topological spaces, from topological groups to Banach spaces.More recently, these structured sets and their transformations have been assembled in higher structures, called categories.We want to give a structural overview of these topics, where the basic facts of the different theories are unified through the 'universal properties' that they satisfy, and their particularities stand out, perhaps even more.This book can be used as a textbook for undergraduate studies and for self-study. It can provide students of Mathematics with a unified perspective of subjects which are often kept apart. It is also addressed to students and researchers of disciplines having strong interactions with Mathematics, like Physics and Chemistry, Statistics, Computer Science, Engineering.
This collection of surveys present an overview of recent developments in Complex Geometry. Topics range from curve and surface theory through special varieties in higher dimensions, moduli theory, K hler geometry, and group actions to Hodge theory and characteristic p-geometry. Written by established experts this book will be a must for mathematicians working in Complex Geometry
This volume collects papers based on talks given at the conference "Geometrias'19: Polyhedra and Beyond", held in the Faculty of Sciences of the University of Porto between September 5-7, 2019 in Portugal. These papers explore the conference's theme from an interdisciplinary standpoint, all the while emphasizing the relevance of polyhedral geometry in contemporary academic research and professional practice. They also investigate how this topic connects to mathematics, art, architecture, computer science, and the science of representation. Polyhedra and Beyond will help inspire scholars, researchers, professionals, and students of any of these disciplines to develop a more thorough understanding of polyhedra.
This book provides an overview of the latest progress on rationality questions in algebraic geometry. It discusses new developments such as universal triviality of the Chow group of zero cycles, various aspects of stable birationality, cubic and Fano fourfolds, rationality of moduli spaces and birational invariants of group actions on varieties, contributed by the foremost experts in their fields. The question of whether an algebraic variety can be parametrized by rational functions of as many variables as its dimension has a long history and played an important role in the history of algebraic geometry. Recent developments in algebraic geometry have made this question again a focal point of research and formed the impetus to organize a conference in the series of conferences on the island of Schiermonnikoog. The book follows in the tradition of earlier volumes, which originated from conferences on the islands Texel and Schiermonnikoog.
This text provides an introduction to basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas: for instance, the existence, uniqueness, and smoothness theorems for differential equations and the flow of a vector field; the basic theory of vector bundles including the existence of tubular neighborhoods for a submanifold; the calculus of differential forms; basic notions of symplectic manifolds, including the canonical 2-form; sprays and covariant derivatives for Riemannian and pseudo-Riemannian manifolds; applications to the exponential map, including the Cartan-Hadamard theorem and the first basic theorem of calculus of variations. Although the book grew out of the author's earlier book "Differential and Riemannian Manifolds", the focus has now changed from the general theory of manifolds to general differential geometry, and includes new chapters on Jacobi lifts, tensorial splitting of the double tangent bundle, curvature and the variation formula, a generalization of the Cartan-Hadamard theorem, the semiparallelogram law of Bruhat-Tits and its equivalence with seminegative curvature and the exponential map distance increasing property, a major example of seminegative curvature (the space of positive definite symmetric real matrices), automorphisms and symmetries, and immersions and submersions. These are all covered for infinite-dimensional manifolds, modeled on Banach and Hilbert Spaces, at no cost in complications, and some gain in the elegance of the proofs. In the finite-dimensional case, differential forms of top degree are discussed, leading to Stokes' theorem (even for manifolds with singular boundary), and several of its applications to the differential or Riemannian case. Basic formulas concerning the Laplacian are given, exhibiting several of its features in immersions and submersions.
Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
Introduction to Recognition and Deciphering of Patterns is meant to acquaint STEM and non-STEM students with different patterns, as well as to where and when specific patterns arise. In addition, the book teaches students how to recognize patterns and distinguish the similarities and differences between them. Patterns, such as weather patterns, traffic patterns, behavioral patterns, geometric patterns, linguistic patterns, structural patterns, digital patterns, and the like, emerge on an everyday basis, . Recognizing patterns and studying their unique traits are essential for the development and enhancement of our intuitive skills and for strengthening our analytical skills. Mathematicians often apply patterns to get acquainted with new concepts--a technique that can be applied across many disciplines. Throughout this book we explore assorted patterns that emerge from various geometrical configurations of squares, circles, right triangles, and equilateral triangles that either repeat at the same scale or at different scales. The book also analytically examines linear patterns, geometric patterns, alternating patterns, piecewise patterns, summation-type patterns and factorial-type patterns. Deciphering the details of these distinct patterns leads to the proof by induction method, and the book will also render properties of Pascal's triangle and provide supplemental practice in deciphering specific patterns and verifying them. This book concludes with first-order recursive relations: describing sequences as recursive relations, obtaining the general solution by solving an initial value problem, and determining the periodic traits. Features * Readily accessible to a broad audience, including those with limited mathematical background * Especially useful for students in non-STEM disciplines, such as psychology, sociology, economics and business, as well as for liberal arts disciplines and art students.
This is the most comprehensive survey of the mathematical life of the legendary Paul Erdos (1913-1996), one of the most versatile and prolific mathematicians of our time. For the first time, all the main areas of Erdos' research are covered in a single project. Because of overwhelming response from the mathematical community, the project now occupies over 1000 pages, arranged into two volumes. These volumes contain both high level research articles as well as key articles that survey some of the cornerstones of Erdos' work, each written by a leading world specialist in the field. A special chapter "Early Days", rare photographs, and art related to Erdos complement this striking collection. A unique contribution is the bibliography on Erdos' publications: the most comprehensive ever published. This new edition, dedicated to the 100th anniversary of Paul Erdos' birth, contains updates on many of the articles from the two volumes of the first edition, several new articles from prominent mathematicians, a new introduction, and more biographical information about Paul Erdos with an updated list of publications. The second volume contains chapters on graph theory and combinatorics, extremal and Ramsey theory, and a section on infinity that covers Erdos' research on set theory. All of these chapters are essentially updated, particularly the extremal theory chapter that contains a survey of flag algebras, a new technique for solving extremal problems.
This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications - Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas of the field, namely Number Theory, Analysis, and Geometry, representing Lang's own breadth of interest and impact. A special introduction by John Tate includes a brief and fascinating account of the Serge Lang's life. This volume's group of 6 editors are also highly prominent mathematicians and were close to Serge Lang, both academically and personally. The volume is suitable to research mathematicians in the areas of Number Theory, Analysis, and Geometry.
This book includes 58 selected articles that highlight the major contributions of Professor Radha Charan Gupta-a doyen of history of mathematics-written on a variety of important topics pertaining to mathematics and astronomy in India. It is divided into ten parts. Part I presents three articles offering an overview of Professor Gupta's oeuvre. The four articles in Part II convey the importance of studies in the history of mathematics. Parts III-VII constituting 33 articles, feature a number of articles on a variety of topics, such as geometry, trigonometry, algebra, combinatorics and spherical trigonometry, which not only reveal the breadth and depth of Professor Gupta's work, but also highlight his deep commitment to the promotion of studies in the history of mathematics. The ten articles of part VIII, present interesting bibliographical sketches of a few veteran historians of mathematics and astronomy in India. Part IX examines the dissemination of mathematical knowledge across different civilisations. The last part presents an up-to-date bibliography of Gupta's work. It also includes a tribute to him in Sanskrit composed in eight verses. |
You may like...
Knowledge in Formation - A Computational…
Janos J. Sarbo, Jozsef I. Farkas, …
Hardcover
R2,665
Discovery Miles 26 650
Learn Spanish with The Great Gatsby - A…
F. Scott Fitzgerald, Weeve Languages
Paperback
R454
Discovery Miles 4 540
Conceptual Analyses of Curriculum…
Sandy White Watson, Omah Williams-Duncan, …
Hardcover
R5,333
Discovery Miles 53 330
Nordic Perspectives on Nature-based…
Peter Fredman, Jan V. Haukeland
Hardcover
R3,933
Discovery Miles 39 330
|