![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
This book introduces differential geometry and cutting-edge findings from the discipline by incorporating both classical approaches and modern discrete differential geometry across all facets and applications, including graphics and imaging, physics and networks. With curvature as the centerpiece, the authors present the development of differential geometry, from curves to surfaces, thence to higher dimensional manifolds; and from smooth structures to metric spaces, weighted manifolds and complexes, and to images, meshes and networks. The first part of the book is a differential geometric study of curves and surfaces in the Euclidean space, enhanced while the second part deals with higher dimensional manifolds centering on curvature by exploring the various ways of extending it to higher dimensional objects and more general structures and how to return to lower dimensional constructs. The third part focuses on computational algorithms in algebraic topology and conformal geometry, applicable for surface parameterization, shape registration and structured mesh generation. The volume will be a useful reference for students of mathematics and computer science, as well as researchers and engineering professionals who are interested in graphics and imaging, complex networks, differential geometry and curvature.
Tensors are used throughout the sciences, especially in solid state physics and quantum information theory. This book brings a geometric perspective to the use of tensors in these areas. It begins with an introduction to the geometry of tensors and provides geometric expositions of the basics of quantum information theory, Strassen's laser method for matrix multiplication, and moment maps in algebraic geometry. It also details several exciting recent developments regarding tensors in general. In particular, it discusses and explains the following material previously only available in the original research papers: (1) Shitov's 2017 refutation of longstanding conjectures of Strassen on rank additivity and Common on symmetric rank; (2) The 2017 Christandl-Vrana-Zuiddam quantum spectral points that bring together quantum information theory, the asymptotic geometry of tensors, matrix multiplication complexity, and moment polytopes in geometric invariant theory; (3) the use of representation theory in quantum information theory, including the solution of the quantum marginal problem; (4) the use of tensor network states in solid state physics, and (5) recent geometric paths towards upper bounds for the complexity of matrix multiplication. Numerous open problems appropriate for graduate students and post-docs are included throughout.
Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," etale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.
This volume is an outcome of the workshop "Moduli of K-stable Varieties", which was held in Rome, Italy in 2017. The content focuses on the existence problem for canonical Kahler metrics and links to the algebro-geometric notion of K-stability. The book includes both surveys on this problem, notably in the case of Fano varieties, and original contributions addressing this and related problems. The papers in the latter group develop the theory of K-stability; explore canonical metrics in the Kahler and almost-Kahler settings; offer new insights into the geometric significance of K-stability; and develop tropical aspects of the moduli space of curves, the singularity theory necessary for higher dimensional moduli theory, and the existence of minimal models. Reflecting the advances made in the area in recent years, the survey articles provide an essential overview of many of the most important findings. The book is intended for all advanced graduate students and researchers who want to learn about recent developments in the theory of moduli space, K-stability and Kahler-Einstein metrics.
One service mathematics has rendered the 'Et moi, ..., si j'avait su comment en revenir, je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Matht"natics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This volume contains original papers and announcements of recent results presented by the main participants of the 5th International Colloquium on Differential Geometry and its Related Fields (ICDG2016). These articles are devoted to some new developments on geometric structures on manifolds. Besides covering a broad overview on geometric structures, this volume provides significant information for researchers not only in the field of differential geometry but also in mathematical physics. Since each article is accompanied with detailed explanations, it serves as a good guide for young scientists working in this area.
A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry - except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson-Walker models, are warped product manifolds.The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson-Walker's and Schwarzschild's.The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century.The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers.
This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group, a theory that is more complicated than the study of the classical non-modular case. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers-an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.
Working out solutions to polynomial equations is a mathematical problem that dates from antiquity. Galois developed a theory in which the obstacle to solving a polynomial equation is an associated collection of symmetries. Obtaining a root requires "breaking" that symmetry. When the degree of an equation is at least five, Galois Theory established that there is no formula for the solutions like those found in lower degree cases. However, this negative result doesn't mean that the practice of equation-solving ends. In a recent breakthrough, Doyle and McMullen devised a solution to the fifth-degree equation that uses geometry, algebra, and dynamics to exploit icosahedral symmetry. Polynomials, Dynamics, and Choice: The Price We Pay for Symmetry is organized in two parts, the first of which develops an account of polynomial symmetry that relies on considerations of algebra and geometry. The second explores beyond polynomials to spaces consisting of choices ranging from mundane decisions to evolutionary algorithms that search for optimal outcomes. The two algorithms in Part I provide frameworks that capture structural issues that can arise in deliberative settings. While decision-making has been approached in mathematical terms, the novelty here is in the use of equation-solving algorithms to illuminate such problems. Features Treats the topic-familiar to many-of solving polynomial equations in a way that's dramatically different from what they saw in school Accessible to a general audience with limited mathematical background Abundant diagrams and graphics.
Recent results from high-energy scattering and theoretical developments of string theory require a change in our understanding of the basic structure of space-time. This book is about the advancement of ideas on the stochastic nature of space-time from the 1930s onward. In particular, the author promotes the concept of space as a set of hazy lumps, first introduced by Karl Menger, and constructs a novel framework for statistical behaviour at the microlevel. The various chapters address topics such as space-time fluctuation and random potential, non-local fields, and the origin of stochasticity. Implications in astro-particle physics and cosmology are also explored. Audience: This volume will be of interest to physicists, chemists and mathematicians involved in particle physics, astrophysics and cosmology.
In succesion to former international meetings on differential geometry held in Hungary and also as a satellite conference of ECM96, the European Mathematical Congress, a Conference on Differential Geometry took place in Budapest from July 27 to July 30, 1996. The host of the Conference was Lorand Eotvos University. The Conference had the following Programme Committee: D.V. Alekseevsky, J.J. Duistermaat, J. Eells, A. Haefliger, O. Kowalski, S. Marchifava, J. Szenthe, L. Tamassy, L. Vanhecke. The participants came mainly from Europe and their total number was 190. The programme included plenary lectures by J. Eliashberg, S. Gallot, O. Kowalski, B. Leeb, and also 135 lectures in 4 sections. The social events, an opening reception and a farewel party, presented inspiring atmosphere to create scientific contacts and also for fruitful discussions. In preparation of the Conference and during it B. Csikos and G. Moussong were constanly ready to help. The present volume contains detailed versions of lectures presented at the Conference and also a list of participants. The subjects cover a wide variety of topics in differential geometry and its applications and all of them contain essential new developments in their respective subjects. It is my pleasant duty to thank the participants who contributed to the success of the Conference, especially those who offered us their manuscripts for publication and also the referees who made several important observa tions. The preparation of the volume was managed with the assistance of E. Daroczy-Kiss."
Clear explanations, an uncluttered and appealing layout, and examples and exercises featuring a variety of real-life applications have made this book popular among students year after year. This latest edition of Swokowski and Cole's ALGEBRA AND TRIGONOMETRY WITH ANALYTIC GEOMETRY retains these features. The problems have been consistently praised for being at just the right level for precalculus students. The book also provides calculator examples, including specific keystrokes that show how to use various graphing calculators to solve problems more quickly. Perhaps most important--this book effectively prepares readers for further courses in mathematics.
This book is dedicated to the memory of Mikael Passare, an outstanding Swedish mathematician who devoted his life to developing the theory of analytic functions in several complex variables and exploring geometric ideas first-hand. It includes several papers describing Mikael's life as well as his contributions to mathematics, written by friends of Mikael's who share his attitude and passion for science. A major section of the book presents original research articles that further develop Mikael's ideas and which were written by his former students and co-authors. All these mathematicians work at the interface of analysis and geometry, and Mikael's impact on their research cannot be underestimated. Most of the contributors were invited speakers at the conference organized at Stockholm University in his honor. This book is an attempt to express our gratitude towards this great mathematician, who left us full of energy and new creative mathematical ideas.
Through two previous editions, the third edition of this popular and intriguing text takes both an analytical/theoretical approach and a visual/intuitive approach to the local and global properties of curves and surfaces. Requiring only multivariable calculus and linear algebra, it develops students' geometric intuition through interactive graphics applets. Applets are presented in Maple workbook format, which readers can access using the free Maple Player. The book explains the reasons for various definitions while the interactive applets offer motivation for definitions, allowing students to explore examples further, and give a visual explanation of complicated theorems. The ability to change parametric curves and parametrized surfaces in an applet lets students probe the concepts far beyond what static text permits. Investigative project ideas promote student research. At users of the previous editions' request, this third edition offers a broader list of exercises. More elementary exercises are added and some challenging problems are moved later in exercise sets to assure more graduated progress. The authors also add hints to motivate students grappling with the more difficult exercises. This student-friendly and readable approach offers additional examples, well-placed to assist student comprehension. In the presentation of the Gauss-Bonnet Theorem, the authors provide more intuition and stepping-stones to help students grasp phenomena behind it. Also, the concept of a homeomorphism is new to students even though it is a key theoretical component of the definition of a regular surface. Providing more examples show students how to prove certain functions are homeomorphisms.
'Guillemin and HaineaEURO (TM)s goal is to construct a well-documented road map that extends undergraduate understanding of multivariable calculus into the theory of differential forms. Throughout, the authors emphasize connections between differential forms and topology while making connections to single and multivariable calculus via the change of variables formula, vector space duals, physics; classical mechanisms, div, curl, grad, BrouweraEURO (TM)s fixed-point theorem, divergence theorem, and StokesaEURO (TM)s theorem ... The exercises support, apply and justify the developing road map.'CHOICEThere already exist a number of excellent graduate textbooks on the theory of differential forms as well as a handful of very good undergraduate textbooks on multivariable calculus in which this subject is briefly touched upon but not elaborated on enough.The goal of this textbook is to be readable and usable for undergraduates. It is entirely devoted to the subject of differential forms and explores a lot of its important ramifications.In particular, our book provides a detailed and lucid account of a fundamental result in the theory of differential forms which is, as a rule, not touched upon in undergraduate texts: the isomorphism between the Cech cohomology groups of a differential manifold and its de Rham cohomology groups.
This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. The goal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete them on their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters that contain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications. Some of the noteworthy features of this book include * Diagrammatic illustrations that encourage readers to think geometrically * Focus on systematic strategy to generate ideas for the proofs of theorems * A wealth of remarks, observations along with a variety of exercises * Historical notes and brief biographies appearing throughout the text
This book provides an up-to-date presentation of homogeneous pseudo-Riemannian structures, an essential tool in the study of pseudo-Riemannian homogeneous spaces. Benefiting from large symmetry groups, these spaces are of high interest in Geometry and Theoretical Physics. Since the seminal book by Tricerri and Vanhecke, the theory of homogeneous structures has been considerably developed and many applications have been found. The present work covers a gap in the literature of more than 35 years, presenting the latest contributions to the field in a modern geometric approach, with special focus on manifolds equipped with pseudo-Riemannian metrics. This unique reference on the topic will be of interest to researchers working in areas of mathematics where homogeneous spaces play an important role, such as Differential Geometry, Global Analysis, General Relativity, and Particle Physics.
- New advancements of fractal analysis with applications to many scientific, engineering, and societal issues - Recent changes and challenges of fractal geometry with the rapid advancement of technology - Attracted chapters on novel theory and recent applications of fractals. - Offers recent findings, modelling and simulations of fractal analysis from eminent institutions across the world - Analytical innovations of fractal analysis - Edited collection with a variety of viewpoints
This book collects papers based on the XXXVI Bialowieza Workshop on Geometric Methods in Physics, 2017. The Workshop, which attracts a community of experts active at the crossroads of mathematics and physics, represents a major annual event in the field. Based on presentations given at the Workshop, the papers gathered here are previously unpublished, at the cutting edge of current research, and primarily grounded in geometry and analysis, with applications to classical and quantum physics. In addition, a Special Session was dedicated to S. Twareque Ali, a distinguished mathematical physicist at Concordia University, Montreal, who passed away in January 2016. For the past six years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics, comprising a series of advanced lectures for graduate students and early-career researchers. The extended abstracts of this year's lecture series are also included here. The unique character of the Workshop-and-School series is due in part to the venue: a famous historical, cultural and environmental site in the Bialowieza forest, a UNESCO World Heritage Centre in eastern Poland. Lectures are given in the Nature and Forest Museum, and local traditions are interwoven with the scientific activities.
This unique textbook combines traditional geometry presents a contemporary approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, introduces axiomatic, Euclidean and non-Euclidean, and transformational geometry. The text integrates applications and examples throughout. The Third Edition offers many updates, including expaning on historical notes, Geometry and Its Applications is a significant text for any college or university that focuses on geometry's usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers. The Third Edition streamlines the treatment from the previous two editions Treatment of axiomatic geometry has been expanded Nearly 300 applications from all fields are included An emphasis on computer science-related applications appeals to student interest Many new excercises keep the presentation fresh
This proceedings volume contains articles related to the research presented at the 2017 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning integral questions and their connections to notions in algebraic topology. This volume features original research articles as well as articles that contain new research and survey some of these recent developments. It is the first of three volumes dedicated to p-adic Hodge theory.
Double Sequence Spaces and Four-Dimensional Matrices provides readers with a clear introduction to the spaces of double sequences and series, as well as their properties. The book then goes beyond this to investigate paranormed double sequence spaces and their algebraic and topological properties, triangle matrices and their domains in certain spaces of double sequences, dual spaces of double sequence spaces, and matrix transformations between double sequence spaces and related topics. Each chapter contains a conclusion section highlighting the importance of results and pointing out possible new ideas that can be studied further. Features Suitable for students at graduate or post-graduate level and researchers Investigates different types of summable spaces and computes their duals Characterizes several four-dimensional matrix classes transforming one summable space into other Discusses several algebraic and topological properties of new sequence spaces generated by the domain of triangles.
1. This book has a market across criminology and criminal justice, sociology and law. 2. While there is a healthy market for books on the death penalty, there is a gap for a book that offers a rigorous theoretical approach to making sense of the data. 3. While many studies have focused specifically on racial bias, this book considers a range of social characteristics and their impact on sentencing, including class, moral reputation and organizational status.
This book introduces multiplicative Frenet curves. We define multiplicative tangent, multiplicative normal, and multiplicative normal plane for a multiplicative Frenet curve. We investigate the local behaviours of a multiplicative parameterized curve around multiplicative biregular points, define multiplicative Bertrand curves and investigate some of their properties. A multiplicative rigid motion is introduced. The book is addressed to instructors and graduate students, and also specialists in geometry, mathematical physics, differential equations, engineering, and specialists in applied sciences. The book is suitable as a textbook for graduate and under-graduate level courses in geometry and analysis. Many examples and problems are included. The author introduces the main conceptions for multiplicative surfaces: multiplicative first fundamental form, the main multiplicative rules for differentiations on multiplicative surfaces, and the main multiplicative regularity conditions for multiplicative surfaces. An investigation of the main classes of multiplicative surfaces and second fundamental forms for multiplicative surfaces is also employed. Multiplicative differential forms and their properties, multiplicative manifolds, multiplicative Einstein manifolds and their properties, are investigated as well. Many unique applications in mathematical physics, classical geometry, economic theory, and theory of time scale calculus are offered. |
![]() ![]() You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R639
Discovery Miles 6 390
|