![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
The textbook provides both beginner and experienced CAD users with the math behind the CAD. The geometry tools introduced here help the reader exploit commercial CAD software to its fullest extent. In fact, the book enables the reader to go beyond what CAD software packages offer in their menus. Chapter 1 summarizes the basic Linear and Vector Algebra pertinent to vectors in 3D, with some novelties: the 2D form of the vector product and the manipulation of "larger" matrices and vectors by means of block-partitioning of larger arrays. In chapter 2 the relations among points, lines and curves in the plane are revised accordingly; the difference between curves representing functions and their geometric counterparts is emphasized. Geometric objects in 3D, namely, points, planes, lines and surfaces are the subject of chapter 3; of the latter, only quadrics are studied, to keep the discussion at an elementary level, but the interested reader is guided to the literature on splines. The concept of affine transformations, at the core of CAD software, is introduced in chapter 4, which includes applications of these transformations to the synthesis of curves and surfaces that would be extremely cumbersome to produce otherwise. The book, catering to various disciplines such as engineering, graphic design, animation and architecture, is kept discipline-independent, while including examples of interest to the various disciplines. Furthermore, the book can be an invaluable complement to undergraduate lectures on CAD.
Over the last fifteen years, the face of knot theory has changed due to various new theories and invariants coming from physics, topology, combinatorics and alge-bra. It suffices to mention the great progress in knot homology theory (Khovanov homology and Ozsvath-Szabo Heegaard-Floer homology), the A-polynomial which give rise to strong invariants of knots and 3-manifolds, in particular, many new unknot detectors. New to this Edition is a discussion of Heegaard-Floer homology theory and A-polynomial of classical links, as well as updates throughout the text. Knot Theory, Second Edition is notable not only for its expert presentation of knot theory's state of the art but also for its accessibility. It is valuable as a profes-sional reference and will serve equally well as a text for a course on knot theory.
This book explores the geometric and kinematic design of the various types of gears most commonly used in practical applications, also considering the problems concerning their cutting processes. The cylindrical spur and helical gears are first considered, determining their main geometric quantities in the light of interference and undercut problems, as well as the related kinematic parameters. Particular attention is paid to the profile shift of these types of gears either generated by rack-type cutter or by pinion-rack cutter. Among other things, profile-shifted toothing allows to obtain teeth shapes capable of greater strength and more balanced specific sliding, as well as to reduce the number of teeth below the minimum one to avoid the operating interference or undercut. These very important aspects of geometric-kinematic design of cylindrical spur and helical gears are then generalized and extended to the other examined types of gears most commonly used in practical applications, such as straight bevel gears; crossed helical gears; worm gears; spiral bevel and hypoid gears. Finally, ordinary gear trains, planetary gear trains and face gear drives are discussed. This is the most advanced reference guide to the state of the art in gear engineering. Topics are addressed from a theoretical standpoint, but in such a way as not to lose sight of the physical phenomena that characterize the various types of gears which are examined. The analytical and numerical solutions are formulated so as to be of interest not only to academics, but also to designers who deal with actual engineering problems concerning the gears
The authors develop a degree theory for compact immersed hypersurfaces of prescribed $K$-curvature immersed in a compact, orientable Riemannian manifold, where $K$ is any elliptic curvature function. They apply this theory to count the (algebraic) number of immersed hyperspheres in various cases: where $K$ is mean curvature, extrinsic curvature and special Lagrangian curvature and show that in all these cases, this number is equal to $-\chi(M)$, where $\chi(M)$ is the Euler characteristic of the ambient manifold $M$.
This welcome boon for students of algebraic topology cuts a much- needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincar characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology.
Welcome to the world of scale symmetry, the last elementary symmetry and the least explored!Find out how this long-neglected element transforms the traditional geometry of lines and planes into a rich landscape of trees, craggy mountains and rolling oceans.Enjoy a visual exploration through the intricate and elaborate structures of scale-symmetric geometry. See unique fractals, Mandelboxes, and automata and physical behaviors. Take part in the author's forage into the lesser-trodden regions of this landscape, and discover unusual and attractive specimens!You will also be provided with all the tools needed to recreate the structures yourself.Every example is new and developed by the author, and is chosen because it pushes the field of scale-symmetric geometry into a scarcely explored region. The results are complex and intricate but the method of generation is often simple, which allows it to be presented graphically without depending on too much mathematical syntax. If you are interested in the mathematics, science and art of scale symmetry, then read on!This is also a book for programmers and for hobbyists: those of us who like to dabble with procedural imagery and see where it leads.
This book aims to provide a friendly introduction to non-commutative geometry. It studies index theory from a classical differential geometry perspective up to the point where classical differential geometry methods become insufficient. It then presents non-commutative geometry as a natural continuation of classical differential geometry. It thereby aims to provide a natural link between classical differential geometry and non-commutative geometry. The book shows that the index formula is a topological statement, and ends with non-commutative topology.
Over the past six decades, several extremely important fields in mathematics have been developed. Among these are Ito calculus, Gaussian measures on Banach spaces, Malliavan calculus, and white noise distribution theory. These subjects have many applications, ranging from finance and economics to physics and biology. Unfortunately, the background information required to conduct research in these subjects presents a tremendous roadblock. The background material primarily stems from an abstract subject known as infinite dimensional topological vector spaces. While this information forms the backdrop for these subjects, the books and papers written about topological vector spaces were never truly written for researchers studying infinite dimensional analysis. Thus, the literature for topological vector spaces is dense and difficult to digest, much of it being written prior to the 1960s. Tools for Infinite Dimensional Analysis aims to address these problems by providing an introduction to the background material for infinite dimensional analysis that is friendly in style and accessible to graduate students and researchers studying the above-mentioned subjects. It will save current and future researchers countless hours and promote research in these areas by removing an obstacle in the path to beginning study in areas of infinite dimensional analysis. Features Focused approach to the subject matter Suitable for graduate students as well as researchers Detailed proofs of primary results
This book consists of 16 surveys on Thurston's work and its later development. The authors are mathematicians who were strongly influenced by Thurston's publications and ideas. The subjects discussed include, among others, knot theory, the topology of 3-manifolds, circle packings, complex projective structures, hyperbolic geometry, Kleinian groups, foliations, mapping class groups, Teichmuller theory, anti-de Sitter geometry, and co-Minkowski geometry. The book is addressed to researchers and students who want to learn about Thurston's wide-ranging mathematical ideas and their impact. At the same time, it is a tribute to Thurston, one of the greatest geometers of all time, whose work extended over many fields in mathematics and who had a unique way of perceiving forms and patterns, and of communicating and writing mathematics.
This volume aims to bridge between elementary textbooks on calculus and established books on advanced analysis. It provides elucidation of the reversible process of differentiation and integration through two featured principles: the chain rule and its inverse - the change of variable - as well as the Leibniz rule and its inverse - the integration by parts. The chain rule or differentiation of composite functions is ubiquitous since almost all (a.a.) functions are composite functions of (elementary) functions and with the change of variable method as its reverse process. The Leibniz rule or differentiation of the product of two functions is essential since it makes differentiation nonlinear and with the method of integration by parts as its reverse process.Readers will find numerous worked-out examples and exercises in this volume. Detailed solutions are provided for most of the common exercises so that readers remain enthusiastically motivated in solving and understanding the concepts better.The intention of this volume is to lead the reader into the rich fields of advanced analysis and to obtain a much better view of useful mathematics.
This book presents the most up-to-date and sophisticated account of the theory of Euclidean lattices and sequences of Euclidean lattices, in the framework of Arakelov geometry, where Euclidean lattices are considered as vector bundles over arithmetic curves. It contains a complete description of the theta invariants which give rise to a closer parallel with the geometric case. The author then unfolds his theory of infinite Hermitian vector bundles over arithmetic curves and their theta invariants, which provides a conceptual framework to deal with the sequences of lattices occurring in many diophantine constructions. The book contains many interesting original insights and ties to other theories. It is written with extreme care, with a clear and pleasant style, and never sacrifices accessibility to sophistication.
In the last thirty years Computational Geometry has emerged as a new discipline from the field of design and analysis of algorithms. That dis cipline studies geometric problems from a computational point of view, and it has attracted enormous research interest. But that interest is mostly concerned with Euclidean Geometry (mainly the plane or Eu clidean 3-dimensional space). Of course, there are some important rea sons for this occurrence since the first applieations and the bases of all developments are in the plane or in 3-dimensional space. But, we can find also some exceptions, and so Voronoi diagrams on the sphere, cylin der, the cone, and the torus have been considered previously, and there are manY works on triangulations on the sphere and other surfaces. The exceptions mentioned in the last paragraph have appeared to try to answer some quest ions which arise in the growing list of areas in which the results of Computational Geometry are applicable, since, in practiee, many situations in those areas lead to problems of Com putational Geometry on surfaces (probably the sphere and the cylinder are the most common examples). We can mention here some specific areas in which these situations happen as engineering, computer aided design, manufacturing, geographie information systems, operations re search, roboties, computer graphics, solid modeling, etc."
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day", an initiative born in 2004 to present the most recent developments in contemporary mathematics.
This book deals with the classical theory of Nevanlinna on the value distribution of meromorphic functions of one complex variable, based on minimum prerequisites for complex manifolds. The theory was extended to several variables by S. Kobayashi, T. Ochiai, J. Carleson, and P. Griffiths in the early 1970s. K. Kodaira took up this subject in his course at The University of Tokyo in 1973 and gave an introductory account of this development in the context of his final paper, contained in this book. The first three chapters are devoted to holomorphic mappings from C to complex manifolds. In the fourth chapter, holomorphic mappings between higher dimensional manifolds are covered. The book is a valuable treatise on the Nevanlinna theory, of special interests to those who want to understand Kodaira's unique approach to basic questions on complex manifolds.
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.
Homology 3-sphere is a closed 3-dimensional manifold whose homology equals that of the 3-sphere. These objects may look rather special but they have played an outstanding role in geometric topology for the past fifty years. The book gives a systematic exposition of diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered are constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its extensions, including invariants of Walker and Lescop, Herald and Lin invariants of knots, and equivariant Casson invariants, Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. It will be appealing to both graduate students and researchers in mathematics and theoretical physics.
MATRIX is Australia's international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in 2018: - Non-Equilibrium Systems and Special Functions - Algebraic Geometry, Approximation and Optimisation - On the Frontiers of High Dimensional Computation - Month of Mathematical Biology - Dynamics, Foliations, and Geometry In Dimension 3 - Recent Trends on Nonlinear PDEs of Elliptic and Parabolic Type - Functional Data Analysis and Beyond - Geometric and Categorical Representation Theory The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
This text offers a selection of papers on singularity theory presented at the Sixth Workshop on Real and Complex Singularities held at ICMC-USP, Brazil. It should help students and specialists to understand results that illustrate the connections between singularity theory and related fields. The authors discuss irreducible plane curve singularities, openness and multitransversality, the distribution Afs and the real asymptotic spectrum, deformations of boundary singularities and non-crystallographic coxeter groups, transversal Whitney topology and singularities of Haefliger foliations, the topology of hypersurface singularities, polar multiplicities and equisingularity of map germs from C3 to C4, and topological invariants of stable maps from a surface to the plane from a global viewpoint.
Focuses on the latest research in Graph Theory Provides recent research findings that are occurring in this field Discusses the advanced developments and gives insights on an international and transnational level Identifies the gaps in the results Presents forthcoming international studies and researches, long with applications in Networking, Computer Science, Chemistry, Biological Sciences, etc.
This book gathers twenty-two papers presented at the second NLAGA-BIRS Symposium, which was held at Cap Skirring and at the Assane Seck University in Ziguinchor, Senegal, on January 25-30, 2022. The five-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometric analysis, geometric structures, dynamics, optimization, inverse problems, complex analysis, algebra, algebraic geometry, control theory, stochastic approximations, and modelling.
This book is an introduction to singularities for graduate students and researchers. Algebraic geometry is said to have originated in the seventeenth century with the famous work Discours de la methode pour bien conduire sa raison, et chercher la verite dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians' works. First, mostly non-singular varieties were studied. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dimensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied. In the second edition, brief descriptions about recent remarkable developments of the researches are added as the last chapter.
Knot Projections offers a comprehensive overview of the latest methods in the study of this branch of topology, based on current research inspired by Arnold's theory of plane curves, Viro's quantization of the Arnold invariant, and Vassiliev's theory of knots, among others. The presentation exploits the intuitiveness of knot projections to introduce the material to an audience without a prior background in topology, making the book suitable as a useful alternative to standard textbooks on the subject. However, the main aim is to serve as an introduction to an active research subject, and includes many open questions.
The subject of Tensor Analysis deals with the problem of the formulation of the relation between various entities in forms which remain invariant when we pass from one system of coordinates to another. The invariant form of equation is necessarily related to the possible system of coordinates with reference to which the equation remains invariant. The primary purpose of this book is the study of the invariance form of equation relative to the totally of the rectangular co-ordinate system in the three-dimensional Euclidean space. We start with the consideration of the way the sets representing various entities are transformed when we pass from one system of rectangular co-ordinates to another. A Tensor may be a physical entity that can be described as a Tensor only with respect to the manner of its representation by means of multi-sux sets associated with different system of axes such that the sets associated with different system of co-ordinate obey the transformation law for Tensor. We have employed sux notation for tensors of any order, we could also employ single letter such A,B to denote Tensors.
This is the most comprehensive survey of the mathematical life of the legendary Paul Erdos (1913-1996), one of the most versatile and prolific mathematicians of our time. For the first time, all the main areas of Erdos' research are covered in a single project. Because of overwhelming response from the mathematical community, the project now occupies over 1000 pages, arranged into two volumes. These volumes contain both high level research articles as well as key articles that survey some of the cornerstones of Erdos' work, each written by a leading world specialist in the field. A special chapter "Early Days", rare photographs, and art related to Erdos complement this striking collection. A unique contribution is the bibliography on Erdos' publications: the most comprehensive ever published. This new edition, dedicated to the 100th anniversary of Paul Erdos' birth, contains updates on many of the articles from the two volumes of the first edition, several new articles from prominent mathematicians, a new introduction, more biographical information about Paul Erdos, and an updated list of publications. The first volume contains the unique chapter "Early Days", which features personal memories of Paul Erdos by a number of his colleagues. The other three chapters cover number theory, random methods, and geometry. All of these chapters are essentially updated, most notably the geometry chapter that covers the recent solution of the problem on the number of distinct distances in finite planar sets, which was the most popular of Erdos' favorite geometry problems.
This book provides a systematic presentation of the mathematical foundation of modern physics with applications particularly within classical mechanics and the theory of relativity. Written to be self-contained, this book provides complete and rigorous proofs of all the results presented within. Among the themes illustrated in the book are differentiable manifolds, differential forms, fiber bundles and differential geometry with non-trivial applications especially within the general theory of relativity. The emphasis is upon a systematic and logical construction of the mathematical foundations. It can be used as a textbook for a pure mathematics course in differential geometry, assuming the reader has a good understanding of basic analysis, linear algebra and point set topology. The book will also appeal to students of theoretical physics interested in the mathematical foundation of the theories. |
You may like...
The Covenants of the Prophet Muhammad…
Ibrahim Mohamed Zein, Ahmed Elwakil
Paperback
R1,197
Discovery Miles 11 970
|