![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
In China, lots of excellent maths students take an active interest in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results - they won the first place almost every year.The author is one of the coaches of China's IMO National Team, whose students have won many gold medals many times in IMO.This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. The book elaborates on Geometric Inequality problems such as inequality for the inscribed quadrilateral, the area inequality for special polygons, linear geometric inequalities, etc.
Coding, Shaping, Making combines inspiration from architecture, mathematics, biology, chemistry, physics and computation to look towards the future of architecture, design and art. It presents ongoing experiments in the search for fundamental principles of form and form-making in nature so that we can better inform our own built environment. In the coming decades, matter will become encoded with shape information so that it shapes itself, as happens in biology. Physical objects, shaped by forces as well, will begin to design themselves based on information encoded in matter they are made of. This knowledge will be scaled and trickled up to architecture. Consequently, architecture will begin to design itself and the role of the architect will need redefining. This heavily illustrated book highlights Haresh Lalvani's efforts towards this speculative future through experiments in form and form-making, including his work in developing a new approach to shape-coding, exploring higher-dimensional geometry for designing physical structures and organizing form in higher-dimensional diagrams. Taking an in-depth look at Lalvani's pioneering experiments of mass customization in industrial products in architecture, combined with his idea of a form continuum, this book argues for the need for integration of coding, shaping and making in future technologies into one seamless process. Drawing together decades of research, this book will be a thought-provoking read for architecture professionals and students, especially those interested in the future of the discipline as it relates to mathematics, science, technology and art. It will also interest those in the latter fields for its broader implications.
Differential Geometry of Manifolds, Second Edition presents the extension of differential geometry from curves and surfaces to manifolds in general. The book provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together classical and modern formulations. It introduces manifolds in a both streamlined and mathematically rigorous way while keeping a view toward applications, particularly in physics. The author takes a practical approach, containing extensive exercises and focusing on applications, including the Hamiltonian formulations of mechanics, electromagnetism, string theory. The Second Edition of this successful textbook offers several notable points of revision. New to the Second Edition: New problems have been added and the level of challenge has been changed to the exercises Each section corresponds to a 60-minute lecture period, making it more user-friendly for lecturers Includes new sections which provide more comprehensive coverage of topics Features a new chapter on Multilinear Algebra
Spherical Geometry and Its Applications introduces spherical geometry and its practical applications in a mathematically rigorous form. The text can serve as a course in spherical geometry for mathematics majors. Readers from various academic backgrounds can comprehend various approaches to the subject. The book introduces an axiomatic system for spherical geometry and uses it to prove the main theorems of the subject. It also provides an alternate approach using quaternions. The author illustrates how a traditional axiomatic system for plane geometry can be modified to produce a different geometric world - but a geometric world that is no less real than the geometric world of the plane. Features: A well-rounded introduction to spherical geometry Provides several proofs of some theorems to appeal to larger audiences Presents principal applications: the study of the surface of the earth, the study of stars and planets in the sky, the study of three- and four-dimensional polyhedra, mappings of the sphere, and crystallography Many problems are based on propositions from the ancient text Sphaerica of Menelaus
Nonabelian multiplicative integration on curves is a classical theory. This volume is about the 2-dimensional case, which is much more difficult. In our construction, the setup is a Lie crossed module: there is a Lie group H, together with an action on it by another Lie group G. The multiplicative integral is an element of H, and it is the limit of Riemann products. Each Riemann product involves a fractal decomposition of the surface into kites (triangles with strings connecting them to the base point). There is a twisting of the integrand, that comes from a 1-dimensional multiplicative integral along the strings, with values in the group G.The main result of this work is the 3-dimensional nonabelian Stokes theorem. This result is new; only a special case of it was predicted (without proof) in papers in mathematical physics. Our constructions and proofs are of a straightforward nature. There are plenty of illustrations to clarify the geometric constructions.Our volume touches on some of the central issues (e.g., descent for nonabelian gerbes) in an unusually down-to-earth manner, involving analysis, differential geometry, combinatorics and Lie theory - instead of the 2-categories and 2-functors that other authors prefer.
Volume of geometric objects plays an important role in applied and theoretical mathematics. This is particularly true in the relatively new branch of discrete geometry, where volume is often used to find new topics for research. Volumetric Discrete Geometry demonstrates the recent aspects of volume, introduces problems related to it, and presents methods to apply it to other geometric problems. Part I of the text consists of survey chapters of selected topics on volume and is suitable for advanced undergraduate students. Part II has chapters of selected proofs of theorems stated in Part I and is oriented for graduate level students wishing to learn about the latest research on the topic. Chapters can be studied independently from each other. Provides a list of 30 open problems to promote research Features more than 60 research exercises Ideally suited for researchers and students of combinatorics, geometry and discrete mathematics
Simplicial Structures in Topology provides a clear and comprehensive introduction to the subject. Ideas are developed in the first four chapters. The fifth chapter studies closed surfaces and gives their classification. The last chapter of the book is devoted to homotopy groups, which are used in short introduction on obstruction theory. The text is more in tune with the original development of algebraic topology as given by Henry Poincare (singular homology is discussed). Illustrative examples throughout and extensive exercises at the end of each chapter for practice enhance the text. Advanced undergraduate and beginning graduate students will benefit from this book. Researchers and professionals interested in topology and applications of mathematics will also find this book useful.
The theory of real-valued Sobolev functions is a classical part of analysis and has a wide range of applications in pure and applied mathematics. By contrast, the study of manifold-valued Sobolev maps is relatively new. The incentive to explore these spaces arose in the last forty years from geometry and physics. This monograph is the first to provide a unified, comprehensive treatment of Sobolev maps to the circle, presenting numerous results obtained by the authors and others. Many surprising connections to other areas of mathematics are explored, including the Monge-Kantorovich theory in optimal transport, items in geometric measure theory, Fourier series, and non-local functionals occurring, for example, as denoising filters in image processing. Numerous digressions provide a glimpse of the theory of sphere-valued Sobolev maps. Each chapter focuses on a single topic and starts with a detailed overview, followed by the most significant results, and rather complete proofs. The "Complements and Open Problems" sections provide short introductions to various subsequent developments or related topics, and suggest newdirections of research. Historical perspectives and a comprehensive list of references close out each chapter. Topics covered include lifting, point and line singularities, minimal connections and minimal surfaces, uniqueness spaces, factorization, density, Dirichlet problems, trace theory, and gap phenomena. Sobolev Maps to the Circle will appeal to mathematicians working in various areas, such as nonlinear analysis, PDEs, geometric analysis, minimal surfaces, optimal transport, and topology. It will also be of interest to physicists working on liquid crystals and the Ginzburg-Landau theory of superconductors.
[From the foreword by B. Teissier] The main ideas of the proof of resolution of singularities of complex-analytic spaces presented here were developed by Heisuke Hironaka in the late 1960s and early 1970s. Since then, a number of proofs, all inspired by Hironaka's general approach, have appeared, the validity of some of them extending beyond the complex analytic case. The proof has now been so streamlined that, although it was seen 50 years ago as one of the most difficult proofs produced by mathematics, it can now be the subject of an advanced university course. Yet, far from being of historical interest only, this long-awaited book will be very rewarding for any mathematician interested in singularity theory. Rather than a proof of a canonical or algorithmic resolution of singularities, what is presented is in fact a masterly study of the infinitely near "worst" singular points of a complex analytic space obtained by successive "permissible" blowing ups and of the way to tame them using certain subspaces of the ambient space. This taming proves by an induction on the dimension that there exist finite sequences of permissible blowing ups at the end of which the worst infinitely near points have disappeared, and this is essentially enough to obtain resolution of singularities. Hironaka's ideas for resolution of singularities appear here in a purified and geometric form, in part because of the need to overcome the globalization problems appearing in complex analytic geometry. In addition, the book contains an elegant presentation of all the prerequisites of complex analytic geometry, including basic definitions and theorems needed to follow the development of ideas and proofs. Its epilogue presents the use of similar ideas in the resolution of singularities of complex analytic foliations. This text will be particularly useful and interesting for readers of the younger generation who wish to understand one of the most fundamental results in algebraic and analytic geometry and invent possible extensions and applications of the methods created to prove it.
The book explains concepts and ideas of mathematics and physics that are relevant for advanced students and researchers of condensed matter physics. With this aim, a brief intuitive introduction to many-body theory is given as a powerful qualitative tool for understanding complex systems. The important emergent concept of a quasiparticle is then introduced as a way to reduce a many-body problem to a single particle quantum problem. Examples of quasiparticles in graphene, superconductors, superfluids and in a topological insulator on a superconductor are discussed.The mathematical idea of self-adjoint extension, which allows short distance information to be included in an effective long distance theory through boundary conditions, is introduced through simple examples and then applied extensively to analyse and predict new physical consequences for graphene.The mathematical discipline of topology is introduced in an intuitive way and is then combined with the methods of differential geometry to show how the emergence of gapless states can be understood. Practical ways of carrying out topological calculations are described.
A leading pioneer in the field offers practical applications of this innovative science. Peters describes complex concepts in an easy-to-follow manner for the non-mathematician. He uses fractals, rescaled range analysis and nonlinear dynamical models to explain behavior and understand price movements. These are specific tools employed by chaos scientists to map and measure physical and now, economic phenomena.
This volume covers semilinear embeddings of vector spaces over division rings and the associated mappings of Grassmannians. In contrast to classical books, we consider a more general class of semilinear mappings and show that this class is important. A large portion of the material will be formulated in terms of graph theory, that is, Grassmann graphs, graph embeddings, and isometric embeddings. In addition, some relations to linear codes will be described. Graduate students and researchers will find this volume to be self-contained with many examples.
Introduces new and advanced methods of model discovery for time-series data using artificial intelligence. Implements topological approaches to distill "machine-intuitive" models from complex dynamics data. Introduces a new paradigm for a parsimonious model of a dynamical system without resorting to differential equations. Heralds a new era in data-driven science and engineering based on the operational concept of "computational intuition".
There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.
The concept of symmetric space is of central importance in many branches of mathematics. Compactifications of these spaces have been studied from the points of view of representation theory, geometry, and random walks. This work is devoted to the study of the interrelationships among these various compactifications and, in particular, focuses on the martin compactifications. It is the first exposition to treat compactifications of symmetric spaces systematically and to uniformized the various points of view. Key features: * definition and detailed analysis of the Martin compactifications * new geometric Compactification, defined in terms of the Tits building, that coincides with the Martin Compactification at the bottom of the positive spectrum. * geometric, non-inductive, description of the Karpelevic Compactification * study of the well-know isomorphism between the Satake compactifications and the Furstenberg compactifications * systematic and clear progression of topics from geometry to analysis, and finally to random walks The work is largely self-contained, with comprehensive references to the literature. It is an excellent resource for both researchers and graduate students.
This book is aimed at graduate students and researchers in physics and mathematics who seek to understand the basics of supersymmetry from a mathematical point of view. It provides a bridge between the physical and mathematical approaches to the superworld. The physicist who is devoted to learning the basics of supergeometry can find a friendly approach here, since only the concepts that are strictly necessary are introduced. On the other hand, the mathematician who wants to learn from physics will find that all the mathematical assumptions are firmly rooted in physical concepts. This may open up a channel of communication between the two communities working on different aspects of supersymmetry.Starting from special relativity and Minkowski space, the idea of conformal space and superspace is built step by step in a mathematically rigorous way, and always connecting with the ideas and notation used in physics. While the book is mainly devoted to these important physical examples of superspaces, it can also be used as an introduction to the field of supergeometry, where a reader can ease into the subject without being overwhelmed with the technical difficulties.
Elementary particles in this book exist as Solitons in-and-of the fabric of spacetime itself. As such they are characterized by their geometry, that is their topology and configuration which lead directly to their physical attributes and behavior as well as to a simplification and reduction of assumptions and the importation of parameter values. The emphasis of the book is thus on that geometry, the algebraic geometry associated with taxonomical issues and the differential geometry that determines the physics as well as on simplifying the results. In itself, however, the process of assembling and developing what eventually went into the book has been a singularly rewarding journey. Along the way some fascinating insights and connections to known physical attributes and theories emerge, some predictable but others unbidden and even unanticipated. The book is intended to summarize that journey in a way that, readers with a range of backgrounds will find interesting and provocative. Connections to other physical theories and subjects are also discussed. A most gratifying development is the emergence of a unifying principle underlying the epistemological structure of not only the elementary particles but of such diverse fields as Radar, Quantum mechanics, Biology, Cosmology and the Philosophy of science.
This book provides a systematic treatment of algebraic and topological properties of convex sets (possibly non-closed or unbounded) in the n-dimensional Euclidean space. Topics under consideration include general properties of convex sets and convex hulls, cones and conic hulls, polyhedral sets, the extreme structure, support and separation properties of convex sets.Lectures on Convex Sets is self-contained and unified in presentation. The book grew up out of various courses on geometry and convexity, taught by the author for more than a decade. It can be used as a textbook for graduate students and even ambitious undergraduates in mathematics, optimization, and operations research. It may also be viewed as a supplementary book for a course on convex geometry or convex analysis, or as a source for independent study of the subject, suitable for non-geometers.
This book provides a systematic treatment of algebraic and topological properties of convex sets (possibly non-closed or unbounded) in the n-dimensional Euclidean space. Topics under consideration include general properties of convex sets and convex hulls, cones and conic hulls, polyhedral sets, the extreme structure, support and separation properties of convex sets.Lectures on Convex Sets is self-contained and unified in presentation. The book grew up out of various courses on geometry and convexity, taught by the author for more than a decade. It can be used as a textbook for graduate students and even ambitious undergraduates in mathematics, optimization, and operations research. It may also be viewed as a supplementary book for a course on convex geometry or convex analysis, or as a source for independent study of the subject, suitable for non-geometers.
A traditional approach to developing multivariate statistical theory is algebraic. Sets of observations are represented by matrices, linear combinations are formed from these matrices by multiplying them by coefficient matrices, and useful statistics are found by imposing various criteria of optimization on these combinations. Matrix algebra is the vehicle for these calculations. A second approach is computational. Since many users find that they do not need to know the mathematical basis of the techniques as long as they have a way to transform data into results, the computation can be done by a package of computer programs that somebody else has written. An approach from this perspective emphasizes how the computer packages are used, and is usually coupled with rules that allow one to extract the most important numbers from the output and interpret them. Useful as both approaches are--particularly when combined--they can overlook an important aspect of multivariate analysis. To apply it correctly, one needs a way to conceptualize the multivariate relationships that exist among variables. This book is designed to help the reader develop a way of thinking about multivariate statistics, as well as to understand in a broader and more intuitive sense what the procedures do and how their results are interpreted. Presenting important procedures of multivariate statistical theory geometrically, the author hopes that this emphasis on the geometry will give the reader a coherent picture into which all the multivariate techniques fit.
Finite element methods have become essential design tools for managing the complex structures and devices needed in modern microwave technology. Long the preferred techniques of both researchers and engineers, their migration from research lab to routine industrial use has been accelerated by hardware and software improvements. The last decade has seen the widespread availability of good commercial finite element programs for an extensive range of applications. Finite Element Software for Microwave Engineering provides the first comprehensive overview of this burgeoning field. With its unique focus on current and future industrial applications rather than on mathematical methodology, this book is an invaluable complement to the existing literature on finite element methods. Directed to practicing engineers and researchers, the book describes user experience with current software, shows how existing programs can be used to solve problems not foreseen by their designers, and attempts to predict which methods may appear in the commercial products of tomorrow.
This book is written as a textbook and includes examples and exercises. This is a companion volume to the author's other books published here on Multiplicative Geometry. There are no similar books on this topic.
During the last four decades, there were numerous important developments on total mean curvature and the theory of finite type submanifolds. This unique and expanded second edition comprises a comprehensive account of the latest updates and new results that cover total mean curvature and submanifolds of finite type. The longstanding biharmonic conjecture of the author's and the generalized biharmonic conjectures are also presented in details. This book will be of use to graduate students and researchers in the field of geometry.
During the last four decades, there were numerous important developments on total mean curvature and the theory of finite type submanifolds. This unique and expanded second edition comprises a comprehensive account of the latest updates and new results that cover total mean curvature and submanifolds of finite type. The longstanding biharmonic conjecture of the author's and the generalized biharmonic conjectures are also presented in details. This book will be of use to graduate students and researchers in the field of geometry.
The purpose of this book is twofold: to present some basic ideas in commutative algebra and algebraic geometry and to introduce topics of current research, centered around the themes of Groebner bases, resultants and syzygies. The presentation of the material combines definitions and proofs with an emphasis on concrete examples. The authors illustrate the use of software such as Mathematica and Singular. The design of the text in each chapter consists of two parts: the fundamentals and the applications, which make it suitable for courses of various lengths, levels, and topics based on the mathematical background of the students. The fundamentals portion of the chapter is intended to be read with minimal outside assistance, and to learn some of the most useful tools in commutative algebra. The applications of the chapter are to provide a glimpse of the advanced mathematical research where the topics and results are related to the material presented earlier. In the applications portion, the authors present a number of results from a wide range of sources without detailed proofs. The applications portion of the chapter is suitable for a reader who knows a little commutative algebra and algebraic geometry already, and serves as a guide to some interesting research topics. This book should be thought of as an introduction to more advanced texts and research topics. Its novelty is that the material presented is a unique combination of the essential methods and the current research results. The goal is to equip readers with the fundamental classical algebra and geometry tools, ignite their research interests, and initiate some potential research projects in the related areas. |
You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R744
Discovery Miles 7 440
|