![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
'Everyone interested in geometric dissections, and this kind of puzzles, either mathematically or recreationally will embrace this publication. But also the readers interested in the history and certainly those who became curious about this mystery man and his manuscript, after reading FredericksonaEURO (TM)s 2006 book, will be fully satisfied with this respectful reproduction eventually made available for a general public.'European Mathematical SocietyA geometric dissection is a cutting of a geometric figure (such as a regular polygon, or a star, or a cross) into pieces that we can rearrange to form another geometric figure. The best dissections are beautiful and possess economy (few pieces), symmetry, or hingeability. They are often challenging to discover.Ernest Irving Freese was an architect who lived and worked in Los Angeles until his death in 1957. Shortly before he passed away, he completed a 200-page manuscript on geometric dissection, the first book-length treatment on that subject. Freese included elegant drawings of dissections that were both original and clever. After his death the manuscript lay forgotten in his former house until Greg Frederickson set in motion its recovery in 2003. What a treat that it was rescued!Frederickson's book sketches a history of geometric dissections and a biography of Freese, followed by a refurbished copy of Freese's manuscript interleaved with a commentary that highlights Freese's major contributions as well as singular improvements made by Frederickson and others after Freese.This book introduces Freese and his creations to math puzzle enthusiasts, by way of his engaging manuscript, his wild adventures, and his lovely dissections. Frederickson also includes remarkable designs that improve on Freese's work, and packs this book with nifty illustrations and tidbits that may well leave you speechless!
The self-avoiding walk is a classical model in statistical mechanics, probability theory and mathematical physics. It is also a simple model of polymer entropy which is useful in modelling phase behaviour in polymers. This monograph provides an authoritative examination of interacting self-avoiding walks, presenting aspects of the thermodynamic limit, phase behaviour, scaling and critical exponents for lattice polygons, lattice animals and surfaces. It also includes a comprehensive account of constructive methods in models of adsorbing, collapsing, and pulled walks, animals and networks, and for models of walks in confined geometries. Additional topics include scaling, knotting in lattice polygons, generating function methods for directed models of walks and polygons, and an introduction to the Edwards model. This essential second edition includes recent breakthroughs in the field, as well as maintaining the older but still relevant topics. New chapters include an expanded presentation of directed models, an exploration of methods and results for the hexagonal lattice, and a chapter devoted to the Monte Carlo methods.
The aim of this book is to give an account of some important new developments in the study of the Yamabe problem on quaternionic contact manifolds. This book covers the conformally flat case of the quaternionic Heisenberg group or sphere, where complete and detailed proofs are given, together with a chapter on the conformal curvature tensor introduced very recently by the authors. The starting point of the considered problems is the well-known Folland-Stein Sobolev type embedding and its sharp form that is determined based on geometric analysis. This book also sits at the interface of the generalization of these fundamental questions motivated by the Carnot-Caratheodory geometry of quaternionic contact manifolds, which have been recently the focus of extensive research motivated by problems in analysis, geometry, mathematical physics and the applied sciences. Through the beautiful resolution of the Yamabe problem on model quaternionic contact spaces, the book serves as an introduction to this field for graduate students and novice researchers, and as a research monograph suitable for experts as well.
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
This remarkable book has endured as a true masterpiece of mathematical exposition. There are few mathematics books that are still so widely read and continue to have so much to offer-even after more than half a century has passed! The book is overflowing with mathematical ideas, which are always explained clearly and elegantly, and above all, with penetrating insight. It is a joy to read, both for beginners and experienced mathematicians. "Hilbert and Cohn-Vossen" is full of interesting facts, many of which you wish you had known before. It's also likely that you have heard those facts before, but surely wondered where they could be found. The book begins with examples of the simplest curves and surfaces, including thread constructions of certain quadrics and other surfaces. The chapter on regular systems of points leads to the crystallographic groups and the regular polyhedra in R3. In this chapter, they also discuss plane lattices. By considering unit lattices, and throwing in a small amount of number theory when necessary, they effortlessly derive Leibniz's series: ?/4=1?1/3+1/5?1/7+?.... In the section on lattices in three and more dimensions, the authors consider sphere-packing problems, including the famous Kepler problem. One of the most remarkable chapters is "Projective Configurations". In a short introductory section, Hilbert and Cohn-Vossen give perhaps the most concise and lucid description of why a general geometer would care about projective geometry and why such an ostensibly plain setup is truly rich in structure and ideas. Here, we see regular polyhedra again, from a different perspective. One of the high points of the chapter is the discussion of Schlafli's Double-Six, which leads to the description of the 27 lines on the general smooth cubic surface. As is true throughout the book, the magnificent drawings in this chapter immeasurably help the reader. A particularly intriguing section in the chapter on differential geometry is Eleven Properties of the Sphere. Which eleven properties of such a ubiquitous mathematical object caught their discerning eye and why? Many mathematicians are familiar with the plaster models of surfaces found in many mathematics departments. The book includes pictures of some of the models that are found in the Goettingen collection. Furthermore, the mysterious lines that mark these surfaces are finally explained! The chapter on kinematics includes a nice discussion of linkages and the geometry of configurations of points and rods that are connected and, perhaps, constrained in some way. This topic in geometry has become increasingly important in recent times, especially in applications to robotics. This is another example of a simple situation that leads to a rich geometry. It would be hard to overestimate the continuing influence Hilbert-Cohn-Vossen's book has had on mathematicians of this century. It surely belongs in the "pantheon" of great mathematics books.
This Research Note explores existence and multiplicity questions for periodic solutions of first order, non-convex Hamiltonian systems. It introduces a new Morse (index) theory that is easier to use, less technical, and more flexible than existing theories and features techniques and results that, until now, have appeared only in scattered journals. Morse Theory for Hamiltonian Systems provides a detailed description of the Maslov index, introduces the notion of relative Morse index, and describes the functional setup for the variational theory of Hamiltonian systems, including a new proof of the equivalence between the Hamiltonian and the Lagrangian index. It also examines the superquadratic Hamiltonian, proving the existence of periodic orbits that do not necessarily satisfy the Rabinowitz condition, studies asymptotically linear systems in detail, and discusses the Arnold conjectures about the number of fixed points of Hamiltonian diffeomorphisms of compact symplectic manifolds. In six succinct chapters, the author provides a self-contained treatment with full proofs. The purely abstract functional aspects have been clearly separated from the applications to Hamiltonian systems, so many of the results can be applied in and other areas of current research, such as wave equations, Chern-Simon functionals, and Lorentzian geometry. Morse Theory for Hamiltonian Systems not only offers clear, well-written prose and a unified account of results and techniques, but it also stimulates curiosity by leading readers into the fascinating world of symplectic topology.
Hit the geometry wall? Get up and running with this no-nonsense guide! Does the thought of geometry make you jittery? You're not alone. Fortunately, this down-to-earth guide helps you approach it from a new angle, making it easier than ever to conquer your fears and score your highest in geometry. From getting started with geometry basics to making friends with lines and angles, you'll be proving triangles congruent, calculating circumference, using formulas, and serving up pi in no time. Geometry is a subject full of mathematical richness and beauty. But it's a subject that bewilders many students because it's so unlike the math they've done before it requires the use of deductive logic in formal proofs. If you're having a hard time wrapping your mind around what that even means, you've come to the right place! Inside, you'll find out how a proof's chain of logic works and even discover some secrets for getting past rough spots along the way. You don't have to be a math genius to grasp geometry, and this book helps you get un-stumped in a hurry! * Find out how to decode complex geometry proofs * Learn to reason deductively and inductively * Make sense of angles, arcs, area, and more * Improve your chances of scoring higher in your geometry class There's no reason to let your nerves get jangled over geometry your understanding will take new shape with the help of Geometry For Dummies.
This reference provides an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains, and special attention is given to error analysis of edge FEM that are particularly well suited to Maxwell's equations .
The aim of this graduate-level text is to equip the reader with the basic tools and techniques needed for research in various areas of geometric analysis. Throughout, the main theme is to present the interaction of partial differential equations and differential geometry. More specifically, emphasis is placed on how the behavior of the solutions of a PDE is affected by the geometry of the underlying manifold and vice versa. For efficiency the author mainly restricts himself to the linear theory and only a rudimentary background in Riemannian geometry and partial differential equations is assumed. Originating from the author's own lectures, this book is an ideal introduction for graduate students, as well as a useful reference for experts in the field.
This book is, on the one hand, a pedagogical introduction to the formalism of slopes, of semi-stability and of related concepts in the simplest possible context. It is therefore accessible to any graduate student with a basic knowledge in algebraic geometry and algebraic groups. On the other hand, the book also provides a thorough introduction to the basics of period domains, as they appear in the geometric approach to local Langlands correspondences and in the recent conjectural p-adic local Langlands program. The authors provide numerous worked examples and establish many connections to topics in the general area of algebraic groups over finite and local fields. In addition, the end of each section includes remarks on open questions, historical context and references to the literature.
This book is a translation of an authoritative introductory text based on a lecture series delivered by the renowned differential geometer, Professor S S Chern in Beijing University in 1980. The original Chinese text, authored by Professor Chern and Professor Wei-Huan Chen, was a unique contribution to the mathematics literature, combining simplicity and economy of approach with depth of contents. The present translation is aimed at a wide audience, including (but not limited to) advanced undergraduate and graduate students in mathematics, as well as physicists interested in the diverse applications of differential geometry to physics. In addition to a thorough treatment of the fundamentals of manifold theory, exterior algebra, the exterior calculus, connections on fiber bundles, Riemannian geometry, Lie groups and moving frames, and complex manifolds (with a succinct introduction to the theory of Chern classes), and an appendix on the relationship between differential geometry and theoretical physics, this book includes a new chapter on Finsler geometry and a new appendix on the history and recent developments of differential geometry, the latter prepared specially for this edition by Professor Chern to bring the text into perspectives.
Introduces new and advanced methods of model discovery for time-series data using artificial intelligence. Implements topological approaches to distill "machine-intuitive" models from complex dynamics data. Introduces a new paradigm for a parsimonious model of a dynamical system without resorting to differential equations. Heralds a new era in data-driven science and engineering based on the operational concept of "computational intuition".
Series of scalars, vectors, or functions are among the fundamental objects of mathematical analysis. When the arrangement of the terms is fixed, investigating a series amounts to investigating the sequence of its partial sums. In this case the theory of series is a part of the theory of sequences, which deals with their convergence, asymptotic behavior, etc. The specific character of the theory of series manifests itself when one considers rearrangements (permutations) of the terms of a series, which brings combinatorial considerations into the problems studied. The phenomenon that a numerical series can change its sum when the order of its terms is changed is one of the most impressive facts encountered in a university analysis course. The present book is devoted precisely to this aspect of the theory of series whose terms are elements of Banach (as well as other topological linear) spaces. The exposition focuses on two complementary problems. The first is to char acterize those series in a given space that remain convergent (and have the same sum) for any rearrangement of their terms; such series are usually called uncon ditionally convergent. The second problem is, when a series converges only for certain rearrangements of its terms (in other words, converges conditionally), to describe its sum range, i.e., the set of sums of all its convergent rearrangements."
Coding, Shaping, Making combines inspiration from architecture, mathematics, biology, chemistry, physics and computation to look towards the future of architecture, design and art. It presents ongoing experiments in the search for fundamental principles of form and form-making in nature so that we can better inform our own built environment. In the coming decades, matter will become encoded with shape information so that it shapes itself, as happens in biology. Physical objects, shaped by forces as well, will begin to design themselves based on information encoded in matter they are made of. This knowledge will be scaled and trickled up to architecture. Consequently, architecture will begin to design itself and the role of the architect will need redefining. This heavily illustrated book highlights Haresh Lalvani's efforts towards this speculative future through experiments in form and form-making, including his work in developing a new approach to shape-coding, exploring higher-dimensional geometry for designing physical structures and organizing form in higher-dimensional diagrams. Taking an in-depth look at Lalvani's pioneering experiments of mass customization in industrial products in architecture, combined with his idea of a form continuum, this book argues for the need for integration of coding, shaping and making in future technologies into one seamless process. Drawing together decades of research, this book will be a thought-provoking read for architecture professionals and students, especially those interested in the future of the discipline as it relates to mathematics, science, technology and art. It will also interest those in the latter fields for its broader implications.
Differential Geometry of Manifolds, Second Edition presents the extension of differential geometry from curves and surfaces to manifolds in general. The book provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together classical and modern formulations. It introduces manifolds in a both streamlined and mathematically rigorous way while keeping a view toward applications, particularly in physics. The author takes a practical approach, containing extensive exercises and focusing on applications, including the Hamiltonian formulations of mechanics, electromagnetism, string theory. The Second Edition of this successful textbook offers several notable points of revision. New to the Second Edition: New problems have been added and the level of challenge has been changed to the exercises Each section corresponds to a 60-minute lecture period, making it more user-friendly for lecturers Includes new sections which provide more comprehensive coverage of topics Features a new chapter on Multilinear Algebra
This book consists of five chapters presenting problems of current research in mathematics, with its history and development, current state, and possible future direction. Four of the chapters are expository in nature while one is based more directly on research. All deal with important areas of mathematics, however, such as algebraic geometry, topology, partial differential equations, Riemannian geometry, and harmonic analysis. This book is addressed to researchers who are interested in those subject areas. Young-Hoon Kiem discusses classical enumerative geometry before string theory and improvements after string theory as well as some recent advances in quantum singularity theory, Donaldson-Thomas theory for Calabi-Yau 4-folds, and Vafa-Witten invariants. Dongho Chae discusses the finite-time singularity problem for three-dimensional incompressible Euler equations. He presents Kato's classical local well-posedness results, Beale-Kato-Majda's blow-up criterion, and recent studies on the singularity problem for the 2D Boussinesq equations. Simon Brendle discusses recent developments that have led to a complete classification of all the singularity models in a three-dimensional Riemannian manifold. He gives an alternative proof of the classification of noncollapsed steady gradient Ricci solitons in dimension 3. Hyeonbae Kang reviews some of the developments in the Neumann-Poincare operator (NPO). His topics include visibility and invisibility via polarization tensors, the decay rate of eigenvalues and surface localization of plasmon, singular geometry and the essential spectrum, analysis of stress, and the structure of the elastic NPO. Danny Calegari provides an explicit description of the shift locus as a complex of spaces over a contractible building. He describes the pieces in terms of dynamically extended laminations and of certain explicit "discriminant-like" affine algebraic varieties.
This book is an account of the combinatorics of projective spaces over a finite field, with special emphasis on one and two dimensions. With its successor volumes, Finite projective spaces over three dimensions (1985), which is devoted to three dimensions, and General Galois geometries (1991), on a general dimension, it provides a comprehensive treatise of this area of mathematics. The area is interesting in itself, but is important for its applications to coding theory and statistics, and its use of group theory, algebraic geometry, and number theory. This edition is a complete reworking of the first edition. The chapters bear almost the same titles as the first edition, but every chapter has been changed. The most significant changes are to Chapters 2, 10, 12, 13, which respectively describe generalities, the geometry of arcs in ovals, the geometry of arcs of higher degree, and blocking sets. The book is divided into three parts. The first part comprises two chapters, the first of which is a survey of finite fields; the second outlines the fundamental properties of projective spaces and their automorphisms, as well as properties of algebraic varieties and curves, in particular, that are used in the rest of the book and the accompanying two volumes. Parts II and III are entirely self-contained; all proofs of results are given. The second part comprises Chapters 3 to 5. They cover, in an arbitrary dimension, the properties of subspaces such as their number and characterization, of partitions into both subspaces and subgeometries, and of quadrics and Hermitian varieties, as well as polarities. Part III is a detailed account of the line and the plane. In the plane, fundamental properties are first revisited without much resort to the generalities of Parts I and II. Then, the structure of arcs and their relation to curves is described; this includes arcs both of degree two and higher degrees. There are further chapters on blocking sets and on small planes, which means of orders up to thirteen. A comprehensive bibliography of more than 3000 items is provided. At the end of each chapter is a section, Notes and References, which attributes proofs, includes further comments, and lists every relevant reference from the bibliography.
It has been known for some time that many of the familiar integrable systems of equations are symmetry reductions of self-duality equations on a metric or on a Yang-Mills connection (for example, the Korteweg-de Vries and nonlinear Schroedinger equations are reductions of the self-dual Yang-Mills equation). This book explores in detail the connections between self-duality and integrability, and also the application of twistor techniques to integrable systems. It has two central themes: first, that the symmetries of self-duality equations provide a natural classification scheme for integrable systems; and second that twistor theory provides a uniform geometric framework for the study of Backlund tranformations, the inverse scattering method, and other such general constructions of integrability theory, and that it elucidates the connections between them.
This book provides a number of combinatorial tools that allow a systematic study of very general discrete spaces involved in the context of discrete quantum gravity. In any dimension D, we can discretize Euclidean gravity in the absence of matter over random discrete spaces obtained by gluing families of polytopes together in all possible ways. These spaces are then classified according to their curvature. In D=2, it results in a theory of random discrete spheres, which converge in the continuum limit towards the Brownian sphere, a random fractal space interpreted as a quantum random space-time. In this limit, the continuous Liouville theory of D=2 quantum gravity is recovered. Previous results in higher dimension regarded triangulations, converging towards a continuum random tree, or gluings of simple building blocks of small sizes, for which multi-trace matrix model results are recovered in any even dimension. In this book, the author develops a bijection with stacked two-dimensional discrete surfaces for the most general colored building blocks, and details how it can be used to classify colored discrete spaces according to their curvature. The way in which this combinatorial problem arrises in discrete quantum gravity and random tensor models is discussed in detail.
Volume of geometric objects plays an important role in applied and theoretical mathematics. This is particularly true in the relatively new branch of discrete geometry, where volume is often used to find new topics for research. Volumetric Discrete Geometry demonstrates the recent aspects of volume, introduces problems related to it, and presents methods to apply it to other geometric problems. Part I of the text consists of survey chapters of selected topics on volume and is suitable for advanced undergraduate students. Part II has chapters of selected proofs of theorems stated in Part I and is oriented for graduate level students wishing to learn about the latest research on the topic. Chapters can be studied independently from each other. Provides a list of 30 open problems to promote research Features more than 60 research exercises Ideally suited for researchers and students of combinatorics, geometry and discrete mathematics
Spaces of holomorphic functions have been a prominent theme in analysis since early in the twentieth century. Of interest to complex analysts, functional analysts, operator theorists, and systems theorists, their study is now flourishing. This volume, an outgrowth of a 1995 program at the Mathematical Sciences Research Institute, contains expository articles by program participants describing the present state of the art. Here researchers and graduate students will encounter Hardy spaces, Bergman spaces, Dirichlet spaces, Hankel and Toeplitz operators, and a sampling of the role these objects play in modern analysis.
This solution manual accompanies the first part of the book An Illustrated Introduction toTopology and Homotopy by the same author. Except for a small number of exercises inthe first few sections, we provide solutions of the (228) odd-numbered problemsappearing in first part of the book (Topology). The primary targets of this manual are thestudents of topology. This set is not disjoint from the set of instructors of topologycourses, who may also find this manual useful as a source of examples, exam problems,etc.
The first edition of Connections was chosen by the National Association of Publishers (USA) as the best book in "Mathematics, Chemistry, and Astronomy - Professional and Reference" in 1991. It has been a comprehensive reference in design science, bringing together in a single volume material from the areas of proportion in architecture and design, tilings and patterns, polyhedra, and symmetry. The book presents both theory and practice and has more than 750 illustrations. It is suitable for research in a variety of fields and as an aid to teaching a course in the mathematics of design. It has been influential in stimulating the burgeoning interest in the relationship between mathematics and design. In the second edition there are five new sections, supplementary, as well as a new preface describing the advances in design science since the publication of the first edition.
This book is written as a textbook and includes examples and exercises. This is a companion volume to the author's other books published here on Multiplicative Geometry. There are no similar books on this topic.
At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book's value as a most welcome reference text on this subject. |
![]() ![]() You may like...
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Functionalized Nanomaterials for…
Sudheesh K. Shukla, Chaudhery Mustansar Hussain, …
Paperback
R5,374
Discovery Miles 53 740
Observer Design for Nonlinear Dynamical…
Driss Boutat, Gang Zheng
Hardcover
R3,617
Discovery Miles 36 170
The Zakharov System and its Soliton…
Boling Guo, Zaihui Gan, …
Hardcover
R3,673
Discovery Miles 36 730
|