![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
Focusing on Sobolev inequalities and their applications to analysis on manifolds and Ricci flow, Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture introduces the field of analysis on Riemann manifolds and uses the tools of Sobolev imbedding and heat kernel estimates to study Ricci flows, especially with surgeries. The author explains key ideas, difficult proofs, and important applications in a succinct, accessible, and unified manner. The book first discusses Sobolev inequalities in various settings, including the Euclidean case, the Riemannian case, and the Ricci flow case. It then explores several applications and ramifications, such as heat kernel estimates, Perelman's W entropies and Sobolev inequality with surgeries, and the proof of Hamilton's little loop conjecture with surgeries. Using these tools, the author presents a unified approach to the Poincare conjecture that clarifies and simplifies Perelman's original proof. Since Perelman solved the Poincare conjecture, the area of Ricci flow with surgery has attracted a great deal of attention in the mathematical research community. Along with coverage of Riemann manifolds, this book shows how to employ Sobolev imbedding and heat kernel estimates to examine Ricci flow with surgery.
This introductory textbook for a graduate course in pure mathematics provides a gateway into the two difficult fields of algebraic geometry and commutative algebra. Algebraic geometry, supported fundamentally by commutative algebra, is a cornerstone of pure mathematics. Along the lines developed by Grothendieck, this book delves into the rich interplay between algebraic geometry and commutative algebra. A selection is made from the wealth of material in the discipline, along with concise yet clear definitions and synopses.
The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions.A tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems.This book is a clear, concise, and self-contained treatment of tensors, tensor fields, and their applications. The book contains practically all the material on tensors needed for applications. It shows how this material is applied in mechanics, covering the foundations of the linear theories of elasticity and elastic shells.The main results are all presented in the first four chapters. The remainder of the book shows how one can apply these results to differential geometry and the study of various types of objects in continuum mechanics such as elastic bodies, plates, and shells. Each chapter of this new edition is supplied with exercises and problems - most with solutions, hints, or answers to help the reader progress. An extended appendix serves as a handbook-style summary of all important formulas contained in the book.
This book covers the basic topics in geometry (including trigonometry) that are accessible and valuable to senior high school and university students. It also includes material that are very useful for problem solving in mathematical competitions, from relatively easy to advanced levels, including the International Mathematical Olympiad.
Combinatorics of Spreads and Parallelisms covers all known finite and infinite parallelisms as well as the planes comprising them. It also presents a complete analysis of general spreads and partitions of vector spaces that provide groups enabling the construction of subgeometry partitions of projective spaces. The book describes general partitions of finite and infinite vector spaces, including Sperner spaces, focal-spreads, and their associated geometries. Since retraction groups provide quasi-subgeometry and subgeometry partitions of projective spaces, the author thoroughly discusses subgeometry partitions and their construction methods. He also features focal-spreads as partitions of vector spaces by subspaces. In addition to presenting many new examples of finite and infinite parallelisms, the book shows that doubly transitive or transitive t-parallelisms cannot exist unless the parallelism is a line parallelism. Along with the author's other three books (Subplane Covered Nets, Foundations of Translation Planes, Handbook of Finite Translation Planes), this text forms a solid, comprehensive account of the complete theory of the geometries that are connected with translation planes in intricate ways. It explores how to construct interesting parallelisms and how general spreads of vector spaces are used to study and construct subgeometry partitions of projective spaces.
This book aims to propose implementations and applications of Fractional Order Systems (FOS). It is well known that FOS can be applied in control applications and systems modeling, and their effectiveness has been proven in many theoretical works and simulation routines. A further and mandatory step for FOS real world utilization is their hardware implementation and applications on real systems modeling. With this viewpoint, introductive chapters on FOS are included, on the definition of stability region of Fractional Order PID Controller and Chaotic FOS, followed by the practical implementation based on Microcontroller, Field Programmable Gate Array, Field Programmable Analog Array and Switched Capacitor. Another section is dedicated to FO modeling of Ionic Polymeric Metal Composite (IPMC). This new material may have applications in robotics, aerospace and biomedicine.
This book covers the basic topics in geometry (including trigonometry) that are accessible and valuable to senior high school and university students. It also includes materials that are very useful for problem solving in mathematical competitions, from relatively easy to advanced levels, including the International Mathematical Olympiad.
This book gives a modern differential geometric treatment of linearly nonholonomically constrained systems. It discusses in detail what is meant by symmetry of such a system and gives a general theory of how to reduce such a symmetry using the concept of a differential space and the almost Poisson bracket structure of its algebra of smooth functions. The above theory is applied to the concrete example of Carathodory's sleigh and the convex rolling rigid body. The qualitative behavior of the motion of the rolling disk is treated exhaustively and in detail. In particular, it classifies all motions of the disk, including those where the disk falls flat and those where it nearly falls flat. The geometric techniques described in this book for symmetry reduction have not appeared in any book before. Nor has the detailed description of the motion of the rolling disk. In this respect, the authors are trail-blazers in their respective fields.
Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology. Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.
"Differential Geometry" offers a concise introduction to some basic notions of modern differential geometry and their applications to solid mechanics and physics. Concepts such as manifolds, groups, fibre bundles and groupoids are first introduced within a purely topological framework. They are shown to be relevant to the description of space-time, configuration spaces of mechanical systems, symmetries in general, microstructure and local and distant symmetries of the constitutive response of continuous media. Once these ideas have been grasped at the topological level, the differential structure needed for the description of physical fields is introduced in terms of differentiable manifolds and principal frame bundles. These mathematical concepts are then illustrated with examples from continuum kinematics, Lagrangian and Hamiltonian mechanics, Cauchy fluxes and dislocation theory. This book will be useful for researchers and graduate students in science and engineering.
Curious Curves is self-contained and unified in presentation. This book is suitable for a topics course, capstone course, or senior seminar; it is also intended for independent study by students and others interested in mathematics.Curves can often provide a better representation of natural phenomena than do the figures of classical geometry. Thus the content - presented with an emphasis on the geometric intuition characteristic of the study of curves - is highly relevant not only for people working in mathematics, but also those in other sciences. The explanations are detailed and illustrative to capture the interest of the reader, as well as complete to provide the necessary background information needed to go further into the subject.
This book unravels the mystery of Geometry in Origami with a unique approach: 64 Polyhedra designs, each made from a single square sheet of paper, no cuts, no glue; each polyhedron the largest possible from the starting size of square and each having an ingenious locking mechanism to hold its shape. The author covers the five Platonic solids (cube, tetrahedron, octahedron, icosahedron and dodecahedron). There are ample variations with different color patterns and sunken sides. Dipyramids and Dimpled Dipyramids, unexplored before this in Origami, are also covered. There are a total of 64 models in the book. All the designs have an interesting look and a pleasing folding sequence and are based on unique mathematical equations.
New to the Second Edition New Foreword by Joseph Clinton, life-long Buckminster Fuller collaborator A new chapter by Chris Kitrick on the mathematical techniques for developing optimal single-edge hexagonal tessellations, of varying density, with the smallest edge possible for a particular topology, suggesting ways of comparing their levels of optimization An expanded history of the evolution of spherical subdivision New applications of spherical design in science, product design, architecture and entertainment New geodesic algorithms for grid optimization New full-color spherical illustrations created using DisplaySphere to aid readers in visualizing and comparing the various tessellations presented in the book. Updated Bibliography with references to the most recent advancements in spherical subdivision methods.
For closed manifolds, there is a highly elaborated theory of number-valued invariants, attached to the underlying manifold, structures and differential operators. On open manifolds, nearly all of this fails, with the exception of some special classes. The goal of this monograph is to establish for open manifolds, structures and differential operators an applicable theory of number-valued relative invariants. This is of great use in the theory of moduli spaces for nonlinear partial differential equations and mathematical physics. The book is self-contained: in particular, it contains an outline of the necessary tools from nonlinear Sobolev analysis.
This volume contains research and expository papers on recent advances in foliations and Riemannian geometry. Some of the topics covered in this volume include: topology, geometry, dynamics and analysis of foliations, curvature, submanifold theory, Lie groups and harmonic maps.Among the contributions, readers may find an extensive survey on characteristic classes of Riemannian foliations offering also new results, an article showing the uniform simplicity of certain diffeomorphism groups, an exposition of convergences of contact structures to foliations from the point of view of Thurston's and Thurston-Bennequin's inequalities, a discussion about Fatou-Julia decompositions for foliations and a description of singular Riemannian foliations on spaces without conjugate points.Papers on submanifold theory focus on the existence of graphs with prescribed mean curvature and mean curvature flow for spacelike graphs, isometric and conformal deformations and detailed surveys on totally geodesic submanifolds in symmetric spaces, cohomogeneity one actions on hyperbolic spaces and rigidity of geodesic spheres in space forms. Geometric realizability of curvature tensors and curvature operators are also treated in this volume with special attention to the affine and the pseudo-Riemannian settings. Also, some contributions on biharmonic maps and submanifolds enrich the scope of this volume in providing an overview of different topics of current interest in differential geometry.
This classic text serves as a tool for self-study; it is also used as a basic text for undergraduate courses in differential geometry. The author's ability to extract the essential elements of the theory in a lucid and concise fashion allows the student easy access to the material and enables the instructor to add emphasis and cover special topics. The extraordinary wealth of examples within the exercises and the new material, ranging from isoperimetric problems to comments on Einstein's original paper on relativity theory, enhance this new edition.
In recent years, the old idea that gauge theories and string
theories are equivalent has been implemented and developed in
various ways, and there are by now various models where the string
theory / gauge theory correspondence is at work. One of the most
important examples of this correspondence relates Chern-Simons
theory, a topological gauge theory in three dimensions which
describes knot and three-manifold invariants, to topological string
theory, which is deeply related to Gromov-Witten invariants. This
has led to some surprising relations between three-manifold
geometry and enumerative geometry. This book gives the first
coherent presentation of this and other related topics. After an
introduction to matrix models and Chern-Simons theory, the book
describes in detail the topological string theories that correspond
to these gauge theories and develops the mathematical implications
of this duality for the enumerative geometry of Calabi-Yau
manifolds and knot theory. It is written in a pedagogical style and
will be useful reading for graduate students and researchers in
both mathematics and physics willing to learn about these
developments.
Since the 1950s control theory has established itself as a major mathematical discipline, particularly suitable for application in a number of research fields, including advanced engineering design, economics and the medical sciences. However, since its emergence, there has been a need to rethink and extend fields such as calculus of variations, differential geometry and nonsmooth analysis, which are closely tied to research on applications. Today control theory is a rich source of basic abstract problems arising from applications, and provides an important frame of reference for investigating purely mathematical issues. In many fields of mathematics, the huge and growing scope of activity has been accompanied by fragmentation into a multitude of narrow specialties. However, outstanding advances are often the result of the quest for unifying themes and a synthesis of different approaches. Control theory and its applications are no exception. Here, the interaction between analysis and geometry has played a crucial role in the evolution of the field. This book collects some recent results, highlighting geometrical and analytical aspects and the possible connections between them. Applications provide the background, in the classical spirit of mutual interplay between abstract theory and problem-solving practice.
Most books on fractals focus on deterministic fractals as the impact of incorporating randomness and time is almost absent. Further, most review fractals without explaining what scaling and self-similarity means. This book introduces the idea of scaling, self-similarity, scale-invariance and their role in the dimensional analysis. For the first time, fractals emphasizing mostly on stochastic fractal, and multifractals which evolves with time instead of scale-free self-similarity, are discussed. Moreover, it looks at power laws and dynamic scaling laws in some detail and provides an overview of modern statistical tools for calculating fractal dimension and multifractal spectrum.
This book offers an introduction to the theory of groupoids and their representations encompassing the standard theory of groups. Using a categorical language, developed from simple examples, the theory of finite groupoids is shown to knit neatly with that of groups and their structure as well as that of their representations is described. The book comprises numerous examples and applications, including well-known games and puzzles, databases and physics applications. Key concepts have been presented using only basic notions so that it can be used both by students and researchers interested in the subject. Category theory is the natural language that is being used to develop the theory of groupoids. However, categorical presentations of mathematical subjects tend to become highly abstract very fast and out of reach of many potential users. To avoid this, foundations of the theory, starting with simple examples, have been developed and used to study the structure of finite groups and groupoids. The appropriate language and notions from category theory have been developed for students of mathematics and theoretical physics. The book presents the theory on the same level as the ordinary and elementary theories of finite groups and their representations, and provides a unified picture of the same. The structure of the algebra of finite groupoids is analysed, along with the classical theory of characters of their representations. Unnecessary complications in the formal presentation of the subject are avoided. The book offers an introduction to the language of category theory in the concrete setting of finite sets. It also shows how this perspective provides a common ground for various problems and applications, ranging from combinatorics, the topology of graphs, structure of databases and quantum physics.
This book pioneers a nonlinear Fredholm theory in a general class of spaces called polyfolds. The theory generalizes certain aspects of nonlinear analysis and differential geometry, and combines them with a pinch of category theory to incorporate local symmetries. On the differential geometrical side, the book introduces a large class of `smooth' spaces and bundles which can have locally varying dimensions (finite or infinite-dimensional). These bundles come with an important class of sections, which display properties reminiscent of classical nonlinear Fredholm theory and allow for implicit function theorems. Within this nonlinear analysis framework, a versatile transversality and perturbation theory is developed to also cover equivariant settings. The theory presented in this book was initiated by the authors between 2007-2010, motivated by nonlinear moduli problems in symplectic geometry. Such problems are usually described locally as nonlinear elliptic systems, and they have to be studied up to a notion of isomorphism. This introduces symmetries, since such a system can be isomorphic to itself in different ways. Bubbling-off phenomena are common and have to be completely understood to produce algebraic invariants. This requires a transversality theory for bubbling-off phenomena in the presence of symmetries. Very often, even in concrete applications, geometric perturbations are not general enough to achieve transversality, and abstract perturbations have to be considered. The theory is already being successfully applied to its intended applications in symplectic geometry, and should find applications to many other areas where partial differential equations, geometry and functional analysis meet. Written by its originators, Polyfold and Fredholm Theory is an authoritative and comprehensive treatise of polyfold theory. It will prove invaluable for researchers studying nonlinear elliptic problems arising in geometric contexts.
It is impossible to trisect angles with straightedge and compass alone, but many people try and think they have succeeded. This book is about angle trisections and the people who attempt them. Its purposes are to collect many trisections in one place, inform about trisectors, to amuse the reader, and, perhaps most importantly, to reduce the number of trisectors. This book includes detailed information about the personalities of trisectors and their constructions. It can be read by anyone who has taken a high school geometry course.
This book contains a selection of classical mathematical papers related to fractal geometry. It is intended for the convenience of the student or scholar wishing to learn about fractal geometry.
The art of origami, or paper folding, is carried out using a square piece of paper to obtain attractive figures of animals, flowers or other familiar figures. It is easy to see that origami has links with geometry. Creases and edges represent lines, intersecting creases and edges make angles, while the intersections themselves represent points. Because of its manipulative and experiential nature, origami could become an effective context for the learning and teaching of geometry. In this unique and original book, origami is an object of mathematical exploration. The activities in this book differ from ordinary origami in that no figures of objects result. Rather, they lead the reader to study the effects of the folding and seek patterns. The experimental approach that characterizes much of science activity can be recognized throughout the book, as the manipulative nature of origami allows much experimenting, comparing, visualizing, discovering and conjecturing. The reader is encouraged to fill in all the proofs, for his/her own satisfaction and for the sake of mathematical completeness. Thus, this book provides a useful, alternative approach for reinforcing and applying the theorems of high school mathematics.
Roman geometric patterns radiate symmetry and order. Drawing the patterns is not just a question of mechanically copying the work of someone else square by square, but of understanding the underlying structure. The patterns are built up from simple elements which seem to 'grow' and develop in an almost organic or living way. This book is arranged as a series of drawing exercises. There is no better way of appreciating the skill and imagination of those artists than by drawing their designs yourself. To 'feel' how a cross 'grows' into a swastika pattern which then 'grows' into a complex interlocking design is something which can only be experienced at first hand. This second edition incorporates the same "drawing led" approach to learning about the subject and as such is invaluable in using the designs for contemporary mosaic, or pattern, design. New photographs and updated text strengthen this approach further. Ideal for schools, shops in or near Roman remains, and historical and art/design sections of shops. |
You may like...
Discovering Computers 2018 - Digital…
Misty Vermaat, Steven Freund, …
Paperback
|