![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
Differential Geometry from a Singularity Theory Viewpoint provides a new look at the fascinating and classical subject of the differential geometry of surfaces in Euclidean spaces. The book uses singularity theory to capture some key geometric features of surfaces. It describes the theory of contact and its link with the theory of caustics and wavefronts. It then uses the powerful techniques of these theories to deduce geometric information about surfaces embedded in 3, 4 and 5-dimensional Euclidean spaces. The book also includes recent work of the authors and their collaborators on the geometry of sub-manifolds in Minkowski spaces.
The book constitutes an elementary course on Plane Euclidean Geometry, pitched at pre-university or at advanced high school level. It is a concise book treating the subject axiomatically, but since it is meant to be a first introduction to the subject, excessive rigour is avoided, making it appealing to a younger audience as well. The aim is to cover the basics of the subject, while keeping the subject lively by means of challenging and interesting exercises. This makes it relevant also for students participating in mathematics circles and in mathematics olympiads.Each section contains several problems, which are not purely drill exercises, but are intended to introduce a sense of 'play' in mathematics, and inculcate appreciation of the elegance and beauty of geometric results. There is an abundance of colour pictures illustrating results and their proofs. A section on hints and a further section on detailed solutions to all the exercises appear at the end of the book, making the book ideal also for self-study.
This is the first book to provide a systematic explanation of both the problems of symplectic topology, and analytical details and techniques in applying the machinery embedded in the Floer theory as a whole. It provides a self-contained exposition of all foundational materials of Floer theory and its applications to various problems arising in symplectic topology. The author gives complete analytic details assuming the reader's knowledge of basic elliptic theory of (first-order) partial differential equations, second-year graduate differential geometry and first-year algebraic topology. He motivates various constructions appearing in Floer theory from the historical context of Lagrange Hamilton's variational principle and Hamiltonian mechanics. He also provides 100 exercises so that readers can test their understanding. The book is a comprehensive resource suitable for experts and newcomers alike."
A Friendly Introduction to Abstract Algebra offers a new approach to laying a foundation for abstract mathematics. Prior experience with proofs is not assumed, and the book takes time to build proof-writing skills in ways that will serve students through a lifetime of learning and creating mathematics. The author's pedagogical philosophy is that when students abstract from a wide range of examples, they are better equipped to conjecture, formalize, and prove new ideas in abstract algebra. Thus, students thoroughly explore all concepts through illuminating examples before formal definitions are introduced. The instruction in proof writing is similarly grounded in student exploration and experience. Throughout the book, the author carefully explains where the ideas in a given proof come from, along with hints and tips on how students can derive those proofs on their own. Readers of this text are not just consumers of mathematical knowledge. Rather, they are learning mathematics by creating mathematics. The author's gentle, helpful writing voice makes this text a particularly appealing choice for instructors and students alike. The book's website has companion materials that support the active-learning approaches in the book, including in-class modules designed to facilitate student exploration.
The chapters in this volume explore the influence of the Russian school on the development of algebraic geometry and representation theory, particularly the pioneering work of two of its illustrious members, Alexander Beilinson and Victor Ginzburg, in celebration of their 60th birthdays. Based on the work of speakers and invited participants at the conference "Interactions Between Representation Theory and Algebraic Geometry", held at the University of Chicago, August 21-25, 2017, this volume illustrates the impact of their research and how it has shaped the development of various branches of mathematics through the use of D-modules, the affine Grassmannian, symplectic algebraic geometry, and other topics. All authors have been deeply influenced by their ideas and present here cutting-edge developments on modern topics. Chapters are organized around three distinct themes: Groups, algebras, categories, and representation theory D-modules and perverse sheaves Analogous varieties defined by quivers Representation Theory and Algebraic Geometry will be an ideal resource for researchers who work in the area, particularly those interested in exploring the impact of the Russian school.
Overview Trigonometry for Engineering Technology teaches the fundamentals or right angle trigonometry while also placing strong emphasis on examples from the field of engineering technology. Written for those without prior experience in the subject, as well as those who need a refresher, its intent is to engage students in a topic that many might otherwise consider unimportant in a future career. May also be found useful by manufacturing companies with in-house training programs. Features Emphasizes examples from the fields of engineering technology for students who are studying to prepare for work in those fields. Many examples and exercises include illustrations to enhance the explanation of real-world scenarios. Each chapter includes example problems that demonstrate a problem-solving procedure for specific problem types. The example problems are followed by exercises that the students solve for practice. Several chapters are included to supplement the right angle trigonometry topics, including Law of Sines, Law of Cosines, and graphing trigonometry functions. An open format allows students to use the text as a workbook in class and during study.Includes answers and solutions to exercise.
This work consists of two sections on the moduli spaces of vector bundles. The first part tackles the classification of vector bundles on algebraic curves. The author also discusses the construction and elementary properties of the moduli spaces of stable bundles. In particular Le Potier constructs HilbertSHGrothendieck schemes of vector bundles, and treats Mumford's geometric invariant theory. The second part centers on the structure of the moduli space of semistable sheaves on the projective plane. The author sketches existence conditions for sheaves of given rank, and Chern class and construction ideas in the general context of projective algebraic surfaces. Professor Le Potier provides a treatment of vector bundles that will be welcomed by experienced algebraic geometers and novices alike.
This book acquaints the reader with the esental ideas of K-homology and develops some of its applications. It includes a detailed introduction to the necessary functional analysis, followed by an exploration of the connections between K-homology and operator theory, coarse geometry, index theory, and assembly maps.
The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that "in learning the sciences examples are of more use than precepts". We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a "global and analytical bias". We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincare duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hoelder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.
A traditional approach to developing multivariate statistical theory is algebraic. Sets of observations are represented by matrices, linear combinations are formed from these matrices by multiplying them by coefficient matrices, and useful statistics are found by imposing various criteria of optimization on these combinations. Matrix algebra is the vehicle for these calculations. A second approach is computational. Since many users find that they do not need to know the mathematical basis of the techniques as long as they have a way to transform data into results, the computation can be done by a package of computer programs that somebody else has written. An approach from this perspective emphasizes how the computer packages are used, and is usually coupled with rules that allow one to extract the most important numbers from the output and interpret them. Useful as both approaches are--particularly when combined--they can overlook an important aspect of multivariate analysis. To apply it correctly, one needs a way to conceptualize the multivariate relationships that exist among variables. This book is designed to help the reader develop a way of thinking about multivariate statistics, as well as to understand in a broader and more intuitive sense what the procedures do and how their results are interpreted. Presenting important procedures of multivariate statistical theory geometrically, the author hopes that this emphasis on the geometry will give the reader a coherent picture into which all the multivariate techniques fit.
The first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields, this book starts from the basics and reaches such advanced results as the Merkurjev-Suslin theorem, a culmination of work initiated by Brauer, Noether, Hasse and Albert, and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, the text covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi-Brauer varieties, and techniques in Milnor K-theory and K-cohomology, leading to a full proof of the Merkurjev-Suslin theorem and its application to the characterization of reduced norms. The final chapter rounds off the theory by presenting the results in positive characteristic, including the theorems of Bloch-Gabber-Kato and Izhboldin. This second edition has been carefully revised and updated, and contains important additional topics.
The central theme of this book is the interaction between the curvature of a complete Riemannian manifold and its topology and global geometry.
This introductory textbook for a graduate course in pure mathematics provides a gateway into the two difficult fields of algebraic geometry and commutative algebra. Algebraic geometry, supported fundamentally by commutative algebra, is a cornerstone of pure mathematics. Along the lines developed by Grothendieck, this book delves into the rich interplay between algebraic geometry and commutative algebra. A selection is made from the wealth of material in the discipline, along with concise yet clear definitions and synopses.
This volume explores Diophantine approximation on smooth manifolds embedded in Euclidean space, developing a coherent body of theory comparable to that of classical Diophantine approximation. In particular, the book deals with Khintchine-type theorems and with the Hausdorff dimension of the associated null sets. After setting out the necessary background material, the authors give a full discussion of Hausdorff dimension and its uses in Diophantine approximation. They employ a wide range of techniques from the number theory arsenal to obtain the upper and lower bounds required, highlighting the difficulty of some of the questions considered. The authors then go on to consider briefly the p-adic case, and conclude with a chapter on some applications of metric Diophantine approximation. All researchers with an interest in Diophantine approximation will want to have this book in their personal libraries.
The concept of symmetric space is of central importance in many branches of mathematics. Compactifications of these spaces have been studied from the points of view of representation theory, geometry, and random walks. This work is devoted to the study of the interrelationships among these various compactifications and, in particular, focuses on the martin compactifications. It is the first exposition to treat compactifications of symmetric spaces systematically and to uniformized the various points of view. Key features: * definition and detailed analysis of the Martin compactifications * new geometric Compactification, defined in terms of the Tits building, that coincides with the Martin Compactification at the bottom of the positive spectrum. * geometric, non-inductive, description of the Karpelevic Compactification * study of the well-know isomorphism between the Satake compactifications and the Furstenberg compactifications * systematic and clear progression of topics from geometry to analysis, and finally to random walks The work is largely self-contained, with comprehensive references to the literature. It is an excellent resource for both researchers and graduate students.
This 2003 book describes a striking connection between topology and algebra, namely that 2D topological quantum field theories are equivalent to commutative Frobenius algebras. The precise formulation of the theorem and its proof is given in terms of monoidal categories, and the main purpose of the book is to develop these concepts from an elementary level, and more generally serve as an introduction to categorical viewpoints in mathematics. Rather than just proving the theorem, it is shown how the result fits into a more general pattern concerning universal monoidal categories for algebraic structures. Throughout, the emphasis is on the interplay between algebra and topology, with graphical interpretation of algebraic operations, and topological structures described algebraically in terms of generators and relations. The book will prove valuable to students or researchers entering this field who will learn a host of modern techniques that will prove useful for future work.
Finite element methods have become essential design tools for managing the complex structures and devices needed in modern microwave technology. Long the preferred techniques of both researchers and engineers, their migration from research lab to routine industrial use has been accelerated by hardware and software improvements. The last decade has seen the widespread availability of good commercial finite element programs for an extensive range of applications. Finite Element Software for Microwave Engineering provides the first comprehensive overview of this burgeoning field. With its unique focus on current and future industrial applications rather than on mathematical methodology, this book is an invaluable complement to the existing literature on finite element methods. Directed to practicing engineers and researchers, the book describes user experience with current software, shows how existing programs can be used to solve problems not foreseen by their designers, and attempts to predict which methods may appear in the commercial products of tomorrow.
A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.
This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.
This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in the conformal field theory. The equation is defined in terms of Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimensional hypergeometric functions, and the hypergeometric functions yield the connection between the representation theories of Lie algebras and quantum groups. The topics presented in this book are not adequately covered in periodicals.
Nonassociative mathematics is a broad research area that studies mathematical structures violating the associative law $x(yz)=(xy)z$. The topics covered by nonassociative mathematics include quasigroups, loops, Latin squares, Lie algebras, Jordan algebras, octonions, racks, quandles, and their applications. This volume contains the proceedings of the Fourth Mile High Conference on Nonassociative Mathematics, held from July 29-August 5, 2017, at the University of Denver, Denver, Colorado. Included are research papers covering active areas of investigation, survey papers covering Leibniz algebras, self-distributive structures, and rack homology, and a sampling of applications ranging from Yang-Mills theory to the Yang-Baxter equation and Laver tables. An important aspect of nonassociative mathematics is the wide range of methods employed, from purely algebraic to geometric, topological, and computational, including automated deduction, all of which play an important role in this book.
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton's geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss's famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein's field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell's equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan's method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.
This book is a comprehensive collection of known results about the Lozi map, a piecewise-affine version of the Henon map. Henon map is one of the most studied examples in dynamical systems and it attracts a lot of attention from researchers, however it is difficult to analyze analytically. Simpler structure of the Lozi map makes it more suitable for such analysis. The book is not only a good introduction to the Lozi map and its generalizations, it also summarizes of important concepts in dynamical systems theory such as hyperbolicity, SRB measures, attractor types, and more.
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincare, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
This book, devoted to an invariant multidimensional process of recovering a function from its derivative, considers additive functions defined on the family of all bounded BV sets that are continuous with respect to a suitable topology. The main applications are related to the Gauss-Green and Stokes theorems. The book contains complete and detailed proofs of all new results, and of many known results for which the references are not easily available. It will provide valuable information to research mathematicians and advanced graduate students interested in geometric integration and related areas. |
![]() ![]() You may like...
Automatic Extraction of Man-Made Objects…
Armin Gruen, Olaf Kuebler, …
Hardcover
R4,542
Discovery Miles 45 420
Fault-tolerant Control and Diagnosis for…
Rafael Martinez-Guerra, Fidel Melendez-Vazquez, …
Hardcover
R2,881
Discovery Miles 28 810
Proceedings of International Conference…
Sukanta Kumar Sabut, Arun Kumar Ray, …
Hardcover
R2,990
Discovery Miles 29 900
Integrable Systems, Quantum Groups and…
L.A. Ibort, M.A. Rodriguez
Hardcover
R2,634
Discovery Miles 26 340
Modeling, Simulation and Optimization…
Biplab Das, Ripon Patgiri, …
Hardcover
R8,464
Discovery Miles 84 640
|