![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
The subject matter in this volume is Schwarz's lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic knowledge on complex analysis and Riemannian geometry. It contains major historic differential geometric generalizations on Schwarz's lemma and provides the necessary information while making the whole volume as concise as ever.
Designed for a rigorous first course in ordinary differential equations, Ordinary Differential Equations: Introduction and Qualitative Theory, Third Edition includes basic material such as the existence and properties of solutions, linear equations, autonomous equations, and stability as well as more advanced topics in periodic solutions of nonlinear equations. Requiring only a background in advanced calculus and linear algebra, the text is appropriate for advanced undergraduate and graduate students in mathematics, engineering, physics, chemistry, or biology. This third edition of a highly acclaimed textbook provides a detailed account of the Bendixson theory of solutions of two-dimensional nonlinear autonomous equations, which is a classical subject that has become more prominent in recent biological applications. By using the Poincare method, it gives a unified treatment of the periodic solutions of perturbed equations. This includes the existence and stability of periodic solutions of perturbed nonautonomous and autonomous equations (bifurcation theory). The text shows how topological degree can be applied to extend the results. It also explains that using the averaging method to seek such periodic solutions is a special case of the use of the Poincare method.
This introduction to the representation theory of compact Lie groups follows Herman Weyl 's original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.
The present volume grew out of an international conference on affine algebraic geometry held in Osaka, Japan during 3-6 March 2011 and is dedicated to Professor Masayoshi Miyanishi on the occasion of his 70th birthday. It contains 16 refereed articles in the areas of affine algebraic geometry, commutative algebra and related fields, which have been the working fields of Professor Miyanishi for almost 50 years. Readers will be able to find recent trends in these areas too. The topics contain both algebraic and analytic, as well as both affine and projective, problems. All the results treated in this volume are new and original which subsequently will provide fresh research problems to explore. This volume is suitable for graduate students and researchers in these areas.
The reach of algebraic curves in cryptography goes far beyond elliptic curve or public key cryptography yet these other application areas have not been systematically covered in the literature. Addressing this gap, Algebraic Curves in Cryptography explores the rich uses of algebraic curves in a range of cryptographic applications, such as secret sharing, frameproof codes, and broadcast encryption. Suitable for researchers and graduate students in mathematics and computer science, this self-contained book is one of the first to focus on many topics in cryptography involving algebraic curves. After supplying the necessary background on algebraic curves, the authors discuss error-correcting codes, including algebraic geometry codes, and provide an introduction to elliptic curves. Each chapter in the remainder of the book deals with a selected topic in cryptography (other than elliptic curve cryptography). The topics covered include secret sharing schemes, authentication codes, frameproof codes, key distribution schemes, broadcast encryption, and sequences. Chapters begin with introductory material before featuring the application of algebraic curves.
This volume contains articles related to the work of the Simons Collaboration "Arithmetic Geometry, Number Theory, and Computation." The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research. Specific topics include algebraic varieties over finite fields the Chabauty-Coleman method modular forms rational points on curves of small genus S-unit equations and integral points.
Based on a graduate course taught at Utrecht University, this book provides a short introduction to the theory of Foliations and Lie Groupoids to students who have already taken a first course in differential geometry. Ieke Moerdijk and Janez Mrcun include detailed references to enable students to find the requisite background material in the research literature. The text features many exercises and worked examples.
The numerous publications on spline theory during recent decades show the importance of its development on modern applied mathematics. The purpose of this text is to give an approach to the theory of spline functions, from the introduction of the phrase "spline" by I.J. Schoenbergin 1946 to the newest theories of spline-wavelets or spline-fractals, emphasizing the significance of the relationship between the general theory and its applications. In addition, this volume provides material on spline function theory, as well as an examination of basic methods in spline functions. The authors have complemented the work with a reference section to stimulate further study.
Advanced Topics in Linear Algebra presents, in an engaging style, novel topics linked through the Weyr matrix canonical form, a largely unknown cousin of the Jordan canonical form discovered by Eduard Weyr in 1885. The book also develops much linear algebra unconnected to canonical forms, that has not previously appeared in book form. It presents common applications of Weyr form, including matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry, with the latter two having topical connections to phylogenetic invariants in biomathematics and multivariate interpolation. The Weyr form clearly outperforms the Jordan form in many situations, particularly where two or more commuting matrices are involved, due to the block upper triangular form a Weyr matrix forces on any commuting matrix. In this book, the authors develop the Weyr form from scratch, and include an algorithm for computing it. The Weyr form is also derived ring-theoretically in an entirely different way to the classical derivation of the Jordan form. A fascinating duality exists between the two forms that allows one to flip back and forth and exploit the combined powers of each. The book weaves together ideas from various mathematical disciplines, demonstrating dramatically the variety and unity of mathematics. Though the book's main focus is linear algebra, it also draws upon ideas from commutative and noncommutative ring theory, module theory, field theory, topology, and algebraic geometry. Advanced Topics in Linear Algebra offers self-contained accounts of the non-trivial results used from outside linear algebra, and lots of worked examples, thereby making it accessible to graduate students. Indeed, the scope of the book makes it an appealing graduate text, either as a reference or for an appropriately designed one or two semester course. A number of the authors' previously unpublished results appear as well.
This volume contains the proceedings of the Conference on Representation Theory and Algebraic Geometry, held in honor of Joseph Bernstein, from June 11-16, 2017, at the Weizmann Institute of Science and The Hebrew University of Jerusalem. The topics reflect the decisive and diverse impact of Bernstein on representation theory in its broadest scope.
Generalized Trigonometric and Hyperbolic Functions highlights, to those in the area of generalized trigonometric functions, an alternative path to the creation and analysis of these classes of functions. Previous efforts have started with integral representations for the inverse generalized sine functions, followed by the construction of the associated cosine functions, and from this, various properties of the generalized trigonometric functions are derived. However, the results contained in this book are based on the application of both geometrical phase space and dynamical systems methodologies. Features Clear, direct construction of a new set of generalized trigonometric and hyperbolic functions Presentation of why x2+y2 = 1, and related expressions, may be interpreted in three distinct ways All the constructions, proofs, and derivations can be readily followed and understood by students, researchers, and professionals in the natural and mathematical sciences
The object of this book is to present the basic facts of convex functions, standard dynamical systems, descent numerical algorithms and some computer programs on Riemannian manifolds in a form suitable for applied mathematicians, scientists and engineers. It contains mathematical information on these subjects and applications distributed in seven chapters whose topics are close to my own areas of research: Metric properties of Riemannian manifolds, First and second variations of the p-energy of a curve; Convex functions on Riemannian manifolds; Geometric examples of convex functions; Flows, convexity and energies; Semidefinite Hessians and applications; Minimization of functions on Riemannian manifolds. All the numerical algorithms, computer programs and the appendices (Riemannian convexity of functions f: R R, Descent methods on the Poincare plane, Descent methods on the sphere, Completeness and convexity on Finsler manifolds) constitute an attempt to make accesible to all users of this book some basic computational techniques and implementation of geometric structures. To further aid the readers, this book also contains a part of the folklore about Riemannian geometry, convex functions and dynamical systems because it is unfortunately "nowhere" to be found in the same context; existing textbooks on convex functions on Euclidean spaces or on dynamical systems do not mention what happens in Riemannian geometry, while the papers dealing with Riemannian manifolds usually avoid discussing elementary facts. Usually a convex function on a Riemannian manifold is a real valued function whose restriction to every geodesic arc is convex."
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. The rapid development of the subject in the past twenty years has resulted in a rich new theory featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. This is the first comprehensive, up-to-date account of the subject and its ramifications. It meets a critical need for such a text, because no book has been published in this area since Coxeter's "Regular Polytopes" (1948) and "Regular Complex Polytopes" (1974).
For those working in singularity theory or other areas of complex geometry, this volume will open the door to the study of Frobenius manifolds. In the first part Hertling explains the theory of manifolds with a multiplication on the tangent bundle. He then presents a simplified explanation of the role of Frobenius manifolds in singularity theory along with all the necessary tools and several applications. Readers will benefit from this careful and sound study of the fundamental structures and results in this exciting branch of mathematics.
Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.
These are the proceedings of the conference "Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics" held at the Department of Mathematics, University of Florida, Gainesville, from November 11 to 13, 1999. The main emphasis of the conference was Com puter Algebra (i. e. symbolic computation) and how it related to the fields of Number Theory, Special Functions, Physics and Combinatorics. A subject that is common to all of these fields is q-series. We brought together those who do symbolic computation with q-series and those who need q-series in cluding workers in Physics and Combinatorics. The goal of the conference was to inform mathematicians and physicists who use q-series of the latest developments in the field of q-series and especially how symbolic computa tion has aided these developments. Over 60 people were invited to participate in the conference. We ended up having 45 participants at the conference, including six one hour plenary speakers and 28 half hour speakers. There were talks in all the areas we were hoping for. There were three software demonstrations."
New Edition available hereEtale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems, duality, and l-adic cohomology. The prerequisites for reading this book are basic algebraic geometry and advanced commutative algebra.
The second edition of this text has sold over 6,000 copies since
publication in 1986 and this revision will make it even more
useful. This is the only book available that is approachable by
"beginners" in this subject. It has become an essential
introduction to the subject for mathematics students, engineers,
physicists, and economists who need to learn how to apply these
vital methods. It is also the only book that thoroughly reviews
certain areas of advanced calculus that are necessary to understand
the subject.
This volume contains three expanded lecture notes from the program Scalar Curvature in Manifold Topology and Conformal Geometry that was held at the Institute for Mathematical Sciences from 1 November to 31 December 2014. The first chapter surveys the recent developments on the fourth-order equations with negative exponent from geometric points of view such as positive mass theorem and uniqueness results. The next chapter deals with the recent important progress on several conjectures such as the existence of non-flat smooth hyper-surfaces and Serrin's over-determined problem. And the final chapter induces a new technique to handle the equation with critical index and the sign change coefficient as well as the negative index term. These topics will be of interest to those studying conformal geometry and geometric partial differential equations.
'Everyone interested in geometric dissections, and this kind of puzzles, either mathematically or recreationally will embrace this publication. But also the readers interested in the history and certainly those who became curious about this mystery man and his manuscript, after reading FredericksonaEURO (TM)s 2006 book, will be fully satisfied with this respectful reproduction eventually made available for a general public.'European Mathematical SocietyA geometric dissection is a cutting of a geometric figure (such as a regular polygon, or a star, or a cross) into pieces that we can rearrange to form another geometric figure. The best dissections are beautiful and possess economy (few pieces), symmetry, or hingeability. They are often challenging to discover.Ernest Irving Freese was an architect who lived and worked in Los Angeles until his death in 1957. Shortly before he passed away, he completed a 200-page manuscript on geometric dissection, the first book-length treatment on that subject. Freese included elegant drawings of dissections that were both original and clever. After his death the manuscript lay forgotten in his former house until Greg Frederickson set in motion its recovery in 2003. What a treat that it was rescued!Frederickson's book sketches a history of geometric dissections and a biography of Freese, followed by a refurbished copy of Freese's manuscript interleaved with a commentary that highlights Freese's major contributions as well as singular improvements made by Frederickson and others after Freese.This book introduces Freese and his creations to math puzzle enthusiasts, by way of his engaging manuscript, his wild adventures, and his lovely dissections. Frederickson also includes remarkable designs that improve on Freese's work, and packs this book with nifty illustrations and tidbits that may well leave you speechless!
Starting from an undergraduate level, this book systematically develops the basics of * Calculus on manifolds, vector bundles, vector fields and differential forms, * Lie groups and Lie group actions, * Linear symplectic algebra and symplectic geometry, * Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.
This study examines the origins of geometry in and out of the intuitively given everyday lifeworlds of children in a second-grade mathematics class. These lifeworlds, though pre-geometric, are not without model objects that denote and come to anchor geometric idealities that they will understand at later points in their lives. Roth's analyses explain how geometry, an objective science, arises anew from the pre-scientific but nevertheless methodic actions of children in a structured world always already shot through with significations. He presents a way of understanding knowing and learning in mathematics that differs from other current approaches, using case studies to demonstrate contradictions and incongruences of other theories - Immanuel Kant, Jean Piaget, and more recent forms of (radical, social) constructivism, embodiment theories, and enactivism - and to show how material phenomenology fused with phenomenological sociology provides answers to the problems that these other paradigms do not answer.
Gorenstein homological algebra is an important area of mathematics, with applications in commutative and noncommutative algebra, model category theory, representation theory, and algebraic geometry. While in classical homological algebra the existence of the projective, injective, and flat resolutions over arbitrary rings are well known, things are a little different when it comes to Gorenstein homological algebra. The main open problems in this area deal with the existence of the Gorenstein injective, Gorenstein projective, and Gorenstein flat resolutions. Gorenstein Homological Algebra is especially suitable for graduate students interested in homological algebra and its applications.
Solid geometry is defined as the study of the geometry of three-dimensional solid figures in Euclidean space. There are numerous techniques in solid geometry, mainly analytic geometry and methods using vectors, since they use linear equations and matrix algebra. Solid geometry is quite useful in everyday life, for example, to design different signs and symbols such as octagon shape stop signs, to indicate traffic rules, to design different 3D objects like cubicles in gaming zones, innovative lifts, creative 3D interiors, and to design 3D computer graphics. Studying solid geometry helps students to improve visualization and increase logical thinking and creativity since it is applicable everywhere in day-to-day life. It builds up a foundation for advanced levels of mathematical studies. Numerous competitive exams include solid geometry since its foundation is required to study other branches like civil engineering, mechanical engineering, computer science engineering, architecture, etc. This book is designed especially for students of all levels, and can serve as a fundamental resource for advanced level studies not only in mathematics but also in various fields like engineering, interior design, architecture, etc. It includes theoretical aspects as well as numerous solved examples. The book includes numerical problems and problems of construction as well as practical problems as an application of the respective topic. A special feature of this book is that it includes solved examples using the mathematical tool MATLAB.
'Everyone interested in geometric dissections, and this kind of puzzles, either mathematically or recreationally will embrace this publication. But also the readers interested in the history and certainly those who became curious about this mystery man and his manuscript, after reading FredericksonaEURO (TM)s 2006 book, will be fully satisfied with this respectful reproduction eventually made available for a general public.'European Mathematical SocietyA geometric dissection is a cutting of a geometric figure (such as a regular polygon, or a star, or a cross) into pieces that we can rearrange to form another geometric figure. The best dissections are beautiful and possess economy (few pieces), symmetry, or hingeability. They are often challenging to discover.Ernest Irving Freese was an architect who lived and worked in Los Angeles until his death in 1957. Shortly before he passed away, he completed a 200-page manuscript on geometric dissection, the first book-length treatment on that subject. Freese included elegant drawings of dissections that were both original and clever. After his death the manuscript lay forgotten in his former house until Greg Frederickson set in motion its recovery in 2003. What a treat that it was rescued!Frederickson's book sketches a history of geometric dissections and a biography of Freese, followed by a refurbished copy of Freese's manuscript interleaved with a commentary that highlights Freese's major contributions as well as singular improvements made by Frederickson and others after Freese.This book introduces Freese and his creations to math puzzle enthusiasts, by way of his engaging manuscript, his wild adventures, and his lovely dissections. Frederickson also includes remarkable designs that improve on Freese's work, and packs this book with nifty illustrations and tidbits that may well leave you speechless! |
![]() ![]() You may like...
Research and Development on Genetic…
Gerd Winter, Peter-Tobias Stoll, …
Hardcover
R4,803
Discovery Miles 48 030
Examining Fractal Image Processing and…
Soumya Ranjan Nayak, Jibitesh Mishra
Hardcover
R7,219
Discovery Miles 72 190
Developmental Neurocognition - Speech…
B. De Boysson-Bardies, Scania De Schonen, …
Hardcover
R8,583
Discovery Miles 85 830
|