![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
Euclidean and other geometries are distinguished by the transformations that preserve their essential properties. Using linear algebra and transformation groups, this book provides a readable exposition of how these classical geometries are both differentiated and connected. Following Cayley and Klein, the book builds on projective and inversive geometry to construct 'linear' and 'circular' geometries, including classical real metric spaces like Euclidean, hyperbolic, elliptic, and spherical, as well as their unitary counterparts. The first part of the book deals with the foundations and general properties of the various kinds of geometries. The latter part studies discrete-geometric structures and their symmetries in various spaces. Written for graduate students, the book includes numerous exercises and covers both classical results and new research in the field. An understanding of analytic geometry, linear algebra, and elementary group theory is assumed.
The techniques and concepts of modern algebra are introduced for their natural role in the study of projectile geometry; groups appear as automorphism groups of configurations, division rings appear in the study of Desargues' theorem and the study of the independence of the seven axioms given for projectile geometry.
This unique book overturns our ideas about non-Euclidean geometry and the fine-structure constant, and attempts to solve long-standing mathematical problems. It describes a general theory of 'recursive' hyperbolic functions based on the 'Mathematics of Harmony,' and the 'golden,' 'silver,' and other 'metallic' proportions. Then, these theories are used to derive an original solution to Hilbert's Fourth Problem for hyperbolic and spherical geometries. On this journey, the book describes the 'golden' qualitative theory of dynamical systems based on 'metallic' proportions. Finally, it presents a solution to a Millennium Problem by developing the Fibonacci special theory of relativity as an original physical-mathematical solution for the fine-structure constant. It is intended for a wide audience who are interested in the history of mathematics, non-Euclidean geometry, Hilbert's mathematical problems, dynamical systems, and Millennium Problems.See Press Release: Application of the mathematics of harmony - Golden non-Euclidean geometry in modern math
This book consists of five chapters presenting problems of current research in mathematics, with its history and development, current state, and possible future direction. Four of the chapters are expository in nature while one is based more directly on research. All deal with important areas of mathematics, however, such as algebraic geometry, topology, partial differential equations, Riemannian geometry, and harmonic analysis. This book is addressed to researchers who are interested in those subject areas. Young-Hoon Kiem discusses classical enumerative geometry before string theory and improvements after string theory as well as some recent advances in quantum singularity theory, Donaldson-Thomas theory for Calabi-Yau 4-folds, and Vafa-Witten invariants. Dongho Chae discusses the finite-time singularity problem for three-dimensional incompressible Euler equations. He presents Kato's classical local well-posedness results, Beale-Kato-Majda's blow-up criterion, and recent studies on the singularity problem for the 2D Boussinesq equations. Simon Brendle discusses recent developments that have led to a complete classification of all the singularity models in a three-dimensional Riemannian manifold. He gives an alternative proof of the classification of noncollapsed steady gradient Ricci solitons in dimension 3. Hyeonbae Kang reviews some of the developments in the Neumann-Poincare operator (NPO). His topics include visibility and invisibility via polarization tensors, the decay rate of eigenvalues and surface localization of plasmon, singular geometry and the essential spectrum, analysis of stress, and the structure of the elastic NPO. Danny Calegari provides an explicit description of the shift locus as a complex of spaces over a contractible building. He describes the pieces in terms of dynamically extended laminations and of certain explicit "discriminant-like" affine algebraic varieties.
Over the last 15 years important results have been achieved in the field of "Hilbert Modular" Varieties. Though the main emphasis of this book is on the geometry of Hilbert modular surfaces, both geometric and arithmetic aspects are treated. An abundance of examples - in fact a whole chapter - completes this competent presentation of the subject. This "Ergebnisbericht" will soon become an indispensible tool for graduate students and researchers in this field.
Despite its importance in the history of Ancient science, Menelaus' Spherics is still by and large unknown. This treatise, which lies at the foundation of spherical geometry, is lost in Greek but has been preserved in its Arabic versions. The reader will find here, for the first time edited and translated into English, the essentials of this tradition, namely: a fragment of an early Arabic translation and the first Arabic redaction of the Spherics composed by al-Mahani /al-Harawi, together with a historical and mathematical study of Menelaus' treatise. With this book, a new and important part of the Greek and Arabic legacy to the history of mathematics comes to light. This book will be an indispensable acquisition for any reader interested in the history of Ancient geometry and science and, more generally, in Greek and Arabic science and culture.
This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman's characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac's famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group. This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt to the presence of gravitational fields that cannot be considered negligible. The second is to understand some of the basic features of a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology. The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title. Reviews of first edition: ..". a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics." (American Mathematical Society, 1993) "Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations." (CHOICE, 1993) ..". his talent in choosing the most significant results and ordering them within the book can't be denied. The reading of the book is, really, a pleasure." (Dutch Mathematical Society, 1993) "
The present volume contains Friedrich Hirzebruch's works from 1987 until 2012. It is the continuation of the two volumes "Friedrich Hirzebruch, Gesammelte Abhandlungen", published by Springer-Verlag in 1987. The volume, edited by Joachim Schwermer, Silke Wimmer-Zagier and Don Zagier, includes all of Friedrich Hirzebruch's mathematical publications from this period as well as two lecture reports written by him. These are supplemented by a number of articles and addresses containing historical or biographical material, as well as obituaries or appreciations of people who were mathematically or personally close to him.
This book collects various perspectives, contributed by both mathematicians and physicists, on the B-model and its role in mirror symmetry. Mirror symmetry is an active topic of research in both the mathematics and physics communities, but among mathematicians, the "A-model" half of the story remains much better-understood than the B-model. This book aims to address that imbalance. It begins with an overview of several methods by which mirrors have been constructed, and from there, gives a thorough account of the "BCOV" B-model theory from a physical perspective; this includes the appearance of such phenomena as the holomorphic anomaly equation and connections to number theory via modularity. Following a mathematical exposition of the subject of quantization, the remainder of the book is devoted to the B-model from a mathematician's point-of-view, including such topics as polyvector fields and primitive forms, Givental's ancestor potential, and integrable systems.
This volume contains three expanded lecture notes from the program Scalar Curvature in Manifold Topology and Conformal Geometry that was held at the Institute for Mathematical Sciences from 1 November to 31 December 2014. The first chapter surveys the recent developments on the fourth-order equations with negative exponent from geometric points of view such as positive mass theorem and uniqueness results. The next chapter deals with the recent important progress on several conjectures such as the existence of non-flat smooth hyper-surfaces and Serrin's over-determined problem. And the final chapter induces a new technique to handle the equation with critical index and the sign change coefficient as well as the negative index term. These topics will be of interest to those studying conformal geometry and geometric partial differential equations.
Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment to be found in original papers. The first six chapters describe the essential ideas of homotopy theory: homotopy groups, the classical theorems, the exact homotopy sequence, fibre-spaces, the Hopf invariant, and the Freudenthal suspension. The final chapters discuss J. H. C. Whitehead's cell-complexes and their application to homotopy groups of complexes.
The statistical theory of shape is a relatively new topic and is generating a great deal of interest and comment by statisticians, engineers and computer scientists. Mathematically, ‘shape’ is the geometrical information required to describe an object when location, scale and rotational effects are removed. The theory was pioneered by Professor David Kendall to solve practical problems concerning shape. This text presents an elegant account of the theory of shape that has evolved from Kendall’s work. Features include:
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Anyone browsing at the stationery store will see an incredible array of pop-up cards available for any occasion. The workings of pop-up cards and pop-up books can be remarkably intricate. Behind such designs lies beautiful geometry involving the intersection of circles, cones, and spheres, the movements of linkages, and other constructions. The geometry can be modelled by algebraic equations, whose solutions explain the dynamics. For example, several pop-up motions rely on the intersection of three spheres, a computation made every second for GPS location. Connecting the motions of the card structures with the algebra and geometry reveals abstract mathematics performing tangible calculations. Beginning with the nephroid in the 19th-century, the mathematics of pop-up design is now at the frontiers of rigid origami and algorithmic computational complexity. All topics are accessible to those familiar with high-school mathematics; no calculus required. Explanations are supplemented by 140+ figures and 20 animations.
Gauge theory, symplectic geometry and symplectic topology are important areas at the crossroads of several mathematical disciplines. The present book, with expertly written surveys of recent developments in these areas, includes some of the first expository material of Seiberg-Witten theory, which has revolutionised the subjects since its introduction in late 1994. Topics covered include: introductions to Seiberg-Witten theory, to applications of the S-W theory to four-dimensional manifold topology, and to the classification of symplectic manifolds; an introduction to the theory of pseudo-holomorphic curves and to quantum cohomology; algebraically integrable Hamiltonian systems and moduli spaces; the stable topology of gauge theory, Morse-Floer theory; pseudo-convexity and its relations to symplectic geometry; generating functions; Frobenius manifolds and topological quantum field theory.
This comprehensive book is an introduction to the basics of Finsler geometry with recent developments in its area. It includes local geometry as well as global geometry of Finsler manifolds.In Part I, the authors discuss differential manifolds, Finsler metrics, the Chern connection, Riemannian and non-Riemannian quantities. Part II is written for readers who would like to further their studies in Finsler geometry. It covers projective transformations, comparison theorems, fundamental group, minimal immersions, harmonic maps, Einstein metrics, conformal transformations, amongst other related topics. The authors made great efforts to ensure that the contents are accessible to senior undergraduate students, graduate students, mathematicians and scientists.
This comprehensive book is an introduction to the basics of Finsler geometry with recent developments in its area. It includes local geometry as well as global geometry of Finsler manifolds.In Part I, the authors discuss differential manifolds, Finsler metrics, the Chern connection, Riemannian and non-Riemannian quantities. Part II is written for readers who would like to further their studies in Finsler geometry. It covers projective transformations, comparison theorems, fundamental group, minimal immersions, harmonic maps, Einstein metrics, conformal transformations, amongst other related topics. The authors made great efforts to ensure that the contents are accessible to senior undergraduate students, graduate students, mathematicians and scientists.
The book constitutes an elementary course on Plane Euclidean Geometry, pitched at pre-university or at advanced high school level. It is a concise book treating the subject axiomatically, but since it is meant to be a first introduction to the subject, excessive rigour is avoided, making it appealing to a younger audience as well. The aim is to cover the basics of the subject, while keeping the subject lively by means of challenging and interesting exercises. This makes it relevant also for students participating in mathematics circles and in mathematics olympiads.Each section contains several problems, which are not purely drill exercises, but are intended to introduce a sense of 'play' in mathematics, and inculcate appreciation of the elegance and beauty of geometric results. There is an abundance of colour pictures illustrating results and their proofs. A section on hints and a further section on detailed solutions to all the exercises appear at the end of the book, making the book ideal also for self-study.
The book constitutes an elementary course on Plane Euclidean Geometry, pitched at pre-university or at advanced high school level. It is a concise book treating the subject axiomatically, but since it is meant to be a first introduction to the subject, excessive rigour is avoided, making it appealing to a younger audience as well. The aim is to cover the basics of the subject, while keeping the subject lively by means of challenging and interesting exercises. This makes it relevant also for students participating in mathematics circles and in mathematics olympiads.Each section contains several problems, which are not purely drill exercises, but are intended to introduce a sense of 'play' in mathematics, and inculcate appreciation of the elegance and beauty of geometric results. There is an abundance of colour pictures illustrating results and their proofs. A section on hints and a further section on detailed solutions to all the exercises appear at the end of the book, making the book ideal also for self-study.
Originally published in 1934, this informative textbook was written by renowned mathematician and astronomer Duncan Sommerville (1879-1934). Primarily aimed at undergraduates, the book carefully starts from the very beginning of the subject, but also engages with concepts which are considered profoundly more specialist in the field of geometry. Following on from a renewed and flourishing interest in geometry at the time, this textbook was 'written more in accordance with the tendencies of the present', placing a different emphasis on the subject's cornerstone principles and illuminating new developments in the field. Chapters are detailed and contain material often required for examinations; topics covered include the Cartesian coordinate system and tangential equations. Well planned, with a scholarly treatment of the subject and capturing a unified knowledge of geometry, this book will be a considerably valuable source to scholars of mathematics as well as to anyone with an interest in the history of education.
Differential Geometry from a Singularity Theory Viewpoint provides a new look at the fascinating and classical subject of the differential geometry of surfaces in Euclidean spaces. The book uses singularity theory to capture some key geometric features of surfaces. It describes the theory of contact and its link with the theory of caustics and wavefronts. It then uses the powerful techniques of these theories to deduce geometric information about surfaces embedded in 3, 4 and 5-dimensional Euclidean spaces. The book also includes recent work of the authors and their collaborators on the geometry of sub-manifolds in Minkowski spaces.
In China, lots of excellent maths students take an active interest in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results - they won the first place almost every year.The author is one of the coaches of China's IMO National Team, whose students have won many gold medals many times in IMO.This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. The book elaborates on Geometric Inequality problems such as inequality for the inscribed quadrilateral, the area inequality for special polygons, linear geometric inequalities, etc.
This volume contains contributions by the main participants of the 4th International Colloquium on Differential Geometry and its Related Fields (ICDG2014). These articles cover recent developments and are devoted mainly to the study of some geometric structures on manifolds and graphs. Readers will find a broad overview of differential geometry and its relationship to other fields in mathematics and physics.
This book acquaints the reader with the esental ideas of K-homology and develops some of its applications. It includes a detailed introduction to the necessary functional analysis, followed by an exploration of the connections between K-homology and operator theory, coarse geometry, index theory, and assembly maps. |
You may like...
Researches on Curves of the Second Order…
George Whitehead Hearn
Paperback
R374
Discovery Miles 3 740
A Collection of Cambridge Mathematical…
John Martin Frederick Wright
Paperback
R534
Discovery Miles 5 340
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,841
Discovery Miles 18 410
|