![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems.As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity.As a monograph, the book deals with the advanced research topic of completely integrable dynamics, with both finitely and infinitely many degrees of freedom, including geometrical structures of solitonic wave equations.
This textbook provides a full and complete axiomatic development of exactly that part of plane Euclidean geometry that forms the standard content of high school geometry. It begins with a set of points, a measure of distance between pairs of points and ten simple axioms. From there the notions of length, area and angle measure, along with congruence and similarity, are carefully defined and their properties proven as theorems. It concludes with a proof of the consistency of the axioms used and a full description of their models. It is provided in guided inquiry (inquiry-based) format with the intention that students will be active learners, proving the theorems and presenting their proofs to their class with the instructor as a mentor and a guide. The book is written for graduate and advanced undergraduate students interested in teaching secondary school mathematics, for pure math majors interested in learning about the foundations of geometry, for faculty preparing future secondary school teachers and as a reference for any professional mathematician. It is written with the hope of anchoring K-12 geometry in solid modern mathematics, thereby fortifying the teaching of secondary and tertiary geometry with a deep understanding of the subject.
This book expresses the full understanding of Weyl's formula for the volume of a tube, its roots and its implications. Historical notes and Mathematica drawings have been added to this revised second edition. From the reviews: "Will do much to make Weyl's tube formula more accessible to modern readers.... A high point is the presentation of estimates for the volumes of tubes in ambient Riemannian manifolds whose curvature is bounded above or below." --BULLETIN OF THE AMS
This book introduces differential geometry and cutting-edge findings from the discipline by incorporating both classical approaches and modern discrete differential geometry across all facets and applications, including graphics and imaging, physics and networks. With curvature as the centerpiece, the authors present the development of differential geometry, from curves to surfaces, thence to higher dimensional manifolds; and from smooth structures to metric spaces, weighted manifolds and complexes, and to images, meshes and networks. The first part of the book is a differential geometric study of curves and surfaces in the Euclidean space, enhanced while the second part deals with higher dimensional manifolds centering on curvature by exploring the various ways of extending it to higher dimensional objects and more general structures and how to return to lower dimensional constructs. The third part focuses on computational algorithms in algebraic topology and conformal geometry, applicable for surface parameterization, shape registration and structured mesh generation. The volume will be a useful reference for students of mathematics and computer science, as well as researchers and engineering professionals who are interested in graphics and imaging, complex networks, differential geometry and curvature.
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.
Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference "Algebraic and Complex Geometry" held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the first author. It also includes a full list of speakers with all titles and abstracts.
Understanding maths has never been easier. Combining bold, elegant graphics with easy-to-understand text, Simply Maths is the perfect introduction to the subject for those who are short of time but hungry for knowledge. Covering more than 90 key mathematical concepts from prime numbers and fractions to quadratic equations and probability experiments, each pared-back, single-page entry explains the concept more clearly than ever before. Organized by major themes - number theory and systems; calculations; geometry; algebra; graphs; ratio and proportion; measurement; probability and statistics; and calculus - entries explain the essentials of each key mathematical theory with simple clarity and for ease of understanding. Whether you are studying maths at school or college, or simply want a jargon-free overview of the subject, this indispensable guide is packed with everything you need to understand the basics quickly and easily.
It isn't that they can't see the solution. It is Approach your problems from the right end and begin with the answers. Then one day, that they can't see the problem perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu ik's The Chillese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Tamari lattices originated from weakenings or reinterpretations of the familar associativity law. This has been the subject of Dov Tamari's thesis at the Sorbonne in Paris in 1951 and the central theme of his subsequent mathematical work. Tamari lattices can be realized in terms of polytopes called associahedra, which in fact also appeared first in Tamari's thesis. By now these beautiful structures have made their appearance in many different areas of pure and applied mathematics, such as algebra, combinatorics, computer science, category theory, geometry, topology, and also in physics. Their interdisciplinary nature provides much fascination and value. On the occasion of Dov Tamari's centennial birthday, this book provides an introduction to topical research related to Tamari's work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations.
The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert-Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps).The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appears much later.The present book, consisting of nine chapters, gives complete treatments of the following items: Coherence of sheaves of holomorphic functions (Chap. 2); Oka-Cartan's Fundamental Theorem (Chap. 4); Coherence of ideal sheaves of complex analytic subsets (Chap. 6); Coherence of the normalization sheaves of complex spaces (Chap. 6); Grauert's Finiteness Theorem (Chaps. 7, 8); Oka's Theorem for Riemann domains (Chap. 8). The theories of sheaf cohomology and domains of holomorphy are also presented (Chaps. 3, 5). Chapter 6 deals with the theory of complex analytic subsets. Chapter 8 is devoted to the applications of formerly obtained results, proving Cartan-Serre's Theorem and Kodaira's Embedding Theorem. In Chap. 9, we discuss the historical development of "Coherence".It is difficult to find a book at this level that treats all of the above subjects in a completely self-contained manner. In the present volume, a number of classical proofs are improved and simplified, so that the contents are easily accessible for beginning graduate students.
This volume presents a collection of results related to the BSD conjecture, based on the first two India-China conferences on this topic. It provides an overview of the conjecture and a few special cases where the conjecture is proved. The broad theme of the two conferences was "Theoretical and Computational Aspects of the Birch and Swinnerton-Dyer Conjecture". The first was held at Beijing International Centre for Mathematical Research (BICMR) in December 2014 and the second was held at the International Centre for Theoretical Sciences (ICTS), Bangalore, India in December 2016. Providing a broad overview of the subject, the book is a valuable resource for young researchers wishing to work in this area. The articles have an extensive list of references to enable diligent researchers to gain an idea of the current state of art on this conjecture.
In recent years, the discovery of new algorithms for dealing with polynomial equations, coupled with their implementation on fast inexpensive computers, has sparked a minor revolution in the study and practice of algebraic geometry. These algorithmic methods have also given rise to some exciting new applications of algebraic geometry. This book illustrates the many uses of algebraic geometry, highlighting some of the more recent applications of Grobner bases and resultants. In order to do this, the authors provide an introduction to some algebraic objects and techniques which are more advanced than one typically encounters in a first course, but nonetheless of great utility. The book is written for nonspecialists and for readers with a diverse range of backgrounds. It assumes knowledge of the material covered in a standard undergraduate course in abstract algebra, and it would help to have some previous exposure to Grobner bases. The book does not assume the reader is familiar with more advanced concepts such as modules. For this new edition the authors added two new sections and a new chapter, updated the references and made numerous minor improvements throughout the text."
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Visualization research aims to provide insight into large, complicated data sets and the phenomena behind them. While there are di?erent methods of reaching this goal, topological methods stand out for their solid mathem- ical foundation, which guides the algorithmic analysis and its presentation. Topology-based methods in visualization have been around since the beg- ning of visualization as a scienti?c discipline, but they initially played only a minor role. In recent years,interest in topology-basedvisualization has grown andsigni?cantinnovationhasledto newconceptsandsuccessfulapplications. The latest trends adapt basic topological concepts to precisely express user interests in topological properties of the data. This book is the outcome of the second workshop on Topological Methods in Visualization, which was held March 4-6, 2007 in Kloster Nimbschen near Leipzig,Germany.Theworkshopbroughttogethermorethan40international researchers to present and discuss the state of the art and new trends in the ?eld of topology-based visualization. Two inspiring invited talks by George Haller, MIT, and Nelson Max, LLNL, were accompanied by 14 presentations by participants and two panel discussions on current and future trends in visualization research. This book contains thirteen research papers that have been peer-reviewed in a two-stage review process. In the ?rst phase, submitted papers where peer-reviewed by the international program committee. After the workshop accepted papers went through a revision and a second review process taking into account comments from the ?rst round and discussions at the workshop. Abouthalfthepapersconcerntopology-basedanalysisandvisualizationof ?uid?owsimulations;twopapersconcernmoregeneraltopologicalalgorithms, while the remaining papers discuss topology-based visualization methods in application areas like biology, medical imaging and electromagnetism.
Although not so well known today, Book 4 of Pappus Collection is one of the most important and influential mathematical texts from antiquity. The mathematical vignettes form a portrait of mathematics during the Hellenistic "Golden Age," illustrating central problems for example, squaring the circle; doubling the cube; and trisecting an angle varying solution strategies, and the different mathematical styles within ancient geometry. This volume provides an English translation of Collection 4, in full, for the first time, including: a new edition of the Greek text, based on a fresh transcription from the main manuscript and offering an alternative to Hultsch 's standard edition, notes to facilitate understanding of the steps in the mathematical argument, a commentary highlighting aspects of the work that have so far been neglected, and supporting the reconstruction of a coherent plan and vision within the work, bibliographical references for further study.
Through two previous editions, the third edition of this popular and intriguing text takes both an analytical/theoretical approach and a visual/intuitive approach to the local and global properties of curves and surfaces. Requiring only multivariable calculus and linear algebra, it develops students' geometric intuition through interactive graphics applets. Applets are presented in Maple workbook format, which readers can access using the free Maple Player. The book explains the reasons for various definitions while the interactive applets offer motivation for definitions, allowing students to explore examples further, and give a visual explanation of complicated theorems. The ability to change parametric curves and parametrized surfaces in an applet lets students probe the concepts far beyond what static text permits. Investigative project ideas promote student research. At users of the previous editions' request, this third edition offers a broader list of exercises. More elementary exercises are added and some challenging problems are moved later in exercise sets to assure more graduated progress. The authors also add hints to motivate students grappling with the more difficult exercises. This student-friendly and readable approach offers additional examples, well-placed to assist student comprehension. In the presentation of the Gauss-Bonnet Theorem, the authors provide more intuition and stepping-stones to help students grasp phenomena behind it. Also, the concept of a homeomorphism is new to students even though it is a key theoretical component of the definition of a regular surface. Providing more examples show students how to prove certain functions are homeomorphisms.
This introduction to the theory of Diophantine approximation pays special regard to Schmidt's subspace theorem and to its applications to Diophantine equations and related topics. The geometric viewpoint on Diophantine equations has been adopted throughout the book. It includes a number of results, some published here for the first time in book form, and some new, as well as classical material presented in an accessible way. Graduate students and experts alike will find the book's broad approach useful for their work, and will discover new techniques and open questions to guide their research. It contains concrete examples and many exercises (ranging from the relatively simple to the much more complex), making it ideal for self-study and enabling readers to quickly grasp the essential concepts.
This interdisciplinary volume collects contributions from experts in their respective fields with as common theme diagrams. Diagrams play a fundamental role in the mathematical visualization and philosophical analysis of forms in space. Some of the most interesting and profound recent developments in contemporary sciences, whether in topology, geometry, dynamic systems theory, quantum field theory or string theory, have been made possible by the introduction of new types of diagrams, which, in addition to their essential role in the discovery of new classes of spaces and phenomena, have contributed to enriching and clarifying the meaning of the operations, structures and properties that are at the heart of these spaces and phenomena. The volume gives a closer look at the scope and the nature of diagrams as constituents of mathematical and physical thought, their function in contemporary artistic work, and appraise, in particular, the actual importance of the diagrams of knots, of braids, of fields, of interaction, of strings in topology and geometry, in quantum physics and in cosmology, but also in theory of perception, in plastic arts and in philosophy. The editors carefully curated this volume to be an inspiration to students and researchers in philosophy, phenomenology, mathematics and the sciences, as well as artists, musicians and the general interested audience.
This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.
Nigel Hitchin is one of the world's foremost figures in the fields of differential and algebraic geometry and their relations with mathematical physics, and he has been Savilian Professor of Geometry at Oxford since 1997. Geometry and Physics: A Festschrift in honour of Nigel Hitchin contain the proceedings of the conferences held in September 2016 in Aarhus, Oxford, and Madrid to mark Nigel Hitchin's 70th birthday, and to honour his far-reaching contributions to geometry and mathematical physics. These texts contain 29 articles by contributors to the conference and other distinguished mathematicians working in related areas, including three Fields Medallists. The articles cover a broad range of topics in differential, algebraic and symplectic geometry, and also in mathematical physics. These volumes will be of interest to researchers and graduate students in geometry and mathematical physics.
Tensors are used throughout the sciences, especially in solid state physics and quantum information theory. This book brings a geometric perspective to the use of tensors in these areas. It begins with an introduction to the geometry of tensors and provides geometric expositions of the basics of quantum information theory, Strassen's laser method for matrix multiplication, and moment maps in algebraic geometry. It also details several exciting recent developments regarding tensors in general. In particular, it discusses and explains the following material previously only available in the original research papers: (1) Shitov's 2017 refutation of longstanding conjectures of Strassen on rank additivity and Common on symmetric rank; (2) The 2017 Christandl-Vrana-Zuiddam quantum spectral points that bring together quantum information theory, the asymptotic geometry of tensors, matrix multiplication complexity, and moment polytopes in geometric invariant theory; (3) the use of representation theory in quantum information theory, including the solution of the quantum marginal problem; (4) the use of tensor network states in solid state physics, and (5) recent geometric paths towards upper bounds for the complexity of matrix multiplication. Numerous open problems appropriate for graduate students and post-docs are included throughout.
Working out solutions to polynomial equations is a mathematical problem that dates from antiquity. Galois developed a theory in which the obstacle to solving a polynomial equation is an associated collection of symmetries. Obtaining a root requires "breaking" that symmetry. When the degree of an equation is at least five, Galois Theory established that there is no formula for the solutions like those found in lower degree cases. However, this negative result doesn't mean that the practice of equation-solving ends. In a recent breakthrough, Doyle and McMullen devised a solution to the fifth-degree equation that uses geometry, algebra, and dynamics to exploit icosahedral symmetry. Polynomials, Dynamics, and Choice: The Price We Pay for Symmetry is organized in two parts, the first of which develops an account of polynomial symmetry that relies on considerations of algebra and geometry. The second explores beyond polynomials to spaces consisting of choices ranging from mundane decisions to evolutionary algorithms that search for optimal outcomes. The two algorithms in Part I provide frameworks that capture structural issues that can arise in deliberative settings. While decision-making has been approached in mathematical terms, the novelty here is in the use of equation-solving algorithms to illuminate such problems. Features Treats the topic-familiar to many-of solving polynomial equations in a way that's dramatically different from what they saw in school Accessible to a general audience with limited mathematical background Abundant diagrams and graphics.
Working out solutions to polynomial equations is a mathematical problem that dates from antiquity. Galois developed a theory in which the obstacle to solving a polynomial equation is an associated collection of symmetries. Obtaining a root requires "breaking" that symmetry. When the degree of an equation is at least five, Galois Theory established that there is no formula for the solutions like those found in lower degree cases. However, this negative result doesn't mean that the practice of equation-solving ends. In a recent breakthrough, Doyle and McMullen devised a solution to the fifth-degree equation that uses geometry, algebra, and dynamics to exploit icosahedral symmetry. Polynomials, Dynamics, and Choice: The Price We Pay for Symmetry is organized in two parts, the first of which develops an account of polynomial symmetry that relies on considerations of algebra and geometry. The second explores beyond polynomials to spaces consisting of choices ranging from mundane decisions to evolutionary algorithms that search for optimal outcomes. The two algorithms in Part I provide frameworks that capture structural issues that can arise in deliberative settings. While decision-making has been approached in mathematical terms, the novelty here is in the use of equation-solving algorithms to illuminate such problems. Features Treats the topic-familiar to many-of solving polynomial equations in a way that's dramatically different from what they saw in school Accessible to a general audience with limited mathematical background Abundant diagrams and graphics.
Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," etale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.
This volume is an outcome of the workshop "Moduli of K-stable Varieties", which was held in Rome, Italy in 2017. The content focuses on the existence problem for canonical Kahler metrics and links to the algebro-geometric notion of K-stability. The book includes both surveys on this problem, notably in the case of Fano varieties, and original contributions addressing this and related problems. The papers in the latter group develop the theory of K-stability; explore canonical metrics in the Kahler and almost-Kahler settings; offer new insights into the geometric significance of K-stability; and develop tropical aspects of the moduli space of curves, the singularity theory necessary for higher dimensional moduli theory, and the existence of minimal models. Reflecting the advances made in the area in recent years, the survey articles provide an essential overview of many of the most important findings. The book is intended for all advanced graduate students and researchers who want to learn about recent developments in the theory of moduli space, K-stability and Kahler-Einstein metrics. |
![]() ![]() You may like...
Cyclic Modules and the Structure of…
S.K. Jain, Ashish K. Srivastava, …
Hardcover
R5,828
Discovery Miles 58 280
Hyperbolic Dynamics and Brownian Motion…
Jacques Franchi, Yves Le Jan
Hardcover
R4,653
Discovery Miles 46 530
Elasticity and Geometry - From hair…
Basile Audoly, Yves Pomeau
Hardcover
R5,303
Discovery Miles 53 030
|