![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
This book contains a systematic exposition of the theory of spinors in finite-dimensional Euclidean and Riemannian spaces. The applications of spinors in field theory and relativistic mechanics of continuous media are considered. The main mathematical part is connected with the study of invariant algebraic and geometric relations between spinors and tensors. The theory of spinors and the methods of the tensor representation of spinors and spinor equations are thoroughly expounded in four-dimensional and three-dimensional spaces. Very useful and important relations are derived that express the derivatives of the spinor fields in terms of the derivatives of various tensor fields. The problems associated with an invariant description of spinors as objects that do not depend on the choice of a coordinate system are addressed in detail. As an application, the author considers an invariant tensor formulation of certain classes of differential spinor equations containing, in particular, the most important spinor equations of field theory and quantum mechanics. Exact solutions of the Einstein-Dirac equations, nonlinear Heisenberg's spinor equations, and equations for relativistic spin fluids are given. The book presents a large body of factual material and is suited for use as a handbook. It is intended for specialists in theoretical physics, as well as for students and post-graduate students of physical and mathematical specialties.
Algebra & Geometry: An Introduction to University Mathematics, Second Edition provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first few chapters cover foundational topics, including the importance of proofs and a discussion of the properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solutions of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra. New to the second edition Several updated chapters, plus an all-new chapter discussing the construction of the real numbers by means of approximations by rational numbers Includes fifteen short 'essays' that are accessible to undergraduate readers, but which direct interested students to more advanced developments of the material Expanded references Contains chapter exercises with solutions provided online at www.routledge.com/9780367563035
Presented in this monograph is the current state-of-the-art in the theory of convex structures. The notion of convexity covered here is considerably broader than the classic one; specifically, it is not restricted to the context of vector spaces. Classical concepts of order-convex sets (Birkhoff) and of geodesically convex sets (Menger) are directly inspired by intuition; they go back to the first half of this century. An axiomatic approach started to develop in the early Fifties. The author became attracted to it in the mid-Seventies, resulting in the present volume, in which graphs appear side-by-side with Banach spaces, classical geometry with matroids, and ordered sets with metric spaces. A wide variety of results has been included (ranging for instance from the area of partition calculus to that of continuous selection). The tools involved are borrowed from areas ranging from discrete mathematics to infinite-dimensional topology. Although addressed primarily to the researcher, parts of this monograph can be used as a basis for a well-balanced, one-semester graduate course.
This volume contains contributions by the main participants of the 4th International Colloquium on Differential Geometry and its Related Fields (ICDG2014). These articles cover recent developments and are devoted mainly to the study of some geometric structures on manifolds and graphs. Readers will find a broad overview of differential geometry and its relationship to other fields in mathematics and physics.
We propose here a study of 'semiexact' and 'homological' categories as a basis for a generalised homological algebra. Our aim is to extend the homological notions to deeply non-abelian situations, where satellites and spectral sequences can still be studied.This is a sequel of a book on 'Homological Algebra, The interplay of homology with distributive lattices and orthodox semigroups', published by the same Editor, but can be read independently of the latter.The previous book develops homological algebra in p-exact categories, i.e. exact categories in the sense of Puppe and Mitchell - a moderate generalisation of abelian categories that is nevertheless crucial for a theory of 'coherence' and 'universal models' of (even abelian) homological algebra. The main motivation of the present, much wider extension is that the exact sequences or spectral sequences produced by unstable homotopy theory cannot be dealt with in the previous framework.According to the present definitions, a semiexact category is a category equipped with an ideal of 'null' morphisms and provided with kernels and cokernels with respect to this ideal. A homological category satisfies some further conditions that allow the construction of subquotients and induced morphisms, in particular the homology of a chain complex or the spectral sequence of an exact couple.Extending abelian categories, and also the p-exact ones, these notions include the usual domains of homology and homotopy theories, e.g. the category of 'pairs' of topological spaces or groups; they also include their codomains, since the sequences of homotopy 'objects' for a pair of pointed spaces or a fibration can be viewed as exact sequences in a homological category, whose objects are actions of groups on pointed sets.
This book develops a novel approach to perturbative quantum field theory: starting with a perturbative formulation of classical field theory, quantization is achieved by means of deformation quantization of the underlying free theory and by applying the principle that as much of the classical structure as possible should be maintained. The resulting formulation of perturbative quantum field theory is a version of the Epstein-Glaser renormalization that is conceptually clear, mathematically rigorous and pragmatically useful for physicists. The connection to traditional formulations of perturbative quantum field theory is also elaborated on, and the formalism is illustrated in a wealth of examples and exercises.
This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.
The first part of this book introduces the Schubert Cells and varieties of the general linear group Gl (k^(r+1)) over a field k according to Ehresmann geometric way. Smooth resolutions for these varieties are constructed in terms of Flag Configurations in k^(r+1) given by linear graphs called Minimal Galleries. In the second part, Schubert Schemes, the Universal Schubert Scheme and their Canonical Smooth Resolution, in terms of the incidence relation in a Tits relative building are constructed for a Reductive Group Scheme as in Grothendieck's SGAIII. This is a topic where algebra and algebraic geometry, combinatorics, and group theory interact in unusual and deep ways.
This volume is a compilation of new results and surveys on the current state of some aspects of the foliation theory presented during the conference "FOLIATIONS 2012". It contains recent materials on foliation theory which is related to differential geometry, the theory of dynamical systems and differential topology. Both the original research and survey articles found in here should inspire students and researchers interested in foliation theory and the related fields to plan his/her further research.
A practical guide to solving problems in chemistry with fractal
geometry.
This book gathers twenty-two papers presented at the second NLAGA-BIRS Symposium, which was held at Cap Skirring and at the Assane Seck University in Ziguinchor, Senegal, on January 25-30, 2022. The five-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometric analysis, geometric structures, dynamics, optimization, inverse problems, complex analysis, algebra, algebraic geometry, control theory, stochastic approximations, and modelling.
This book aims to provide a friendly introduction to non-commutative geometry. It studies index theory from a classical differential geometry perspective up to the point where classical differential geometry methods become insufficient. It then presents non-commutative geometry as a natural continuation of classical differential geometry. It thereby aims to provide a natural link between classical differential geometry and non-commutative geometry. The book shows that the index formula is a topological statement, and ends with non-commutative topology.
The book introduces the basic notions in Symplectic and Contact Geometry at the level of the second year graduate student. It also contains many exercises, some of which are solved only in the last chapter.We begin with the linear theory, then give the definition of symplectic manifolds and some basic examples, review advanced calculus, discuss Hamiltonian systems, tour rapidly group and the basics of contact geometry, and solve problems in chapter 8. The material just described can be used as a one semester course on Symplectic and Contact Geometry.The book contains also more advanced material, suitable to advanced graduate students and researchers.
The authors develop a degree theory for compact immersed hypersurfaces of prescribed $K$-curvature immersed in a compact, orientable Riemannian manifold, where $K$ is any elliptic curvature function. They apply this theory to count the (algebraic) number of immersed hyperspheres in various cases: where $K$ is mean curvature, extrinsic curvature and special Lagrangian curvature and show that in all these cases, this number is equal to $-\chi(M)$, where $\chi(M)$ is the Euler characteristic of the ambient manifold $M$.
This book, the third book in the four-volume series in algebra, deals with important topics in homological algebra, including abstract theory of derived functors, sheaf co-homology, and an introduction to etale and l-adic co-homology. It contains four chapters which discuss homology theory in an abelian category together with some important and fundamental applications in geometry, topology, algebraic geometry (including basics in abstract algebraic geometry), and group theory. The book will be of value to graduate and higher undergraduate students specializing in any branch of mathematics. The author has tried to make the book self-contained by introducing relevant concepts and results required. Prerequisite knowledge of the basics of algebra, linear algebra, topology, and calculus of several variables will be useful.
The Yang-Mills theory of gauge interactions is a prime example of interdisciplinary mathematics and advanced physics. Its historical development is a fascinating window into the ongoing struggle of mankind to understand nature. The discovery of gauge fields and their properties is the most formidable landmark of modern physics. The expression of the gauge field strength as the curvature associated to a given connection, places quantum field theory in the same geometrical footing as the gravitational field of general relativity which is naturally written in geometrical terms. The understanding of such geometrical property may help one day to write a unified field theory starting from symmetry principles. Of course, there are remarkable differences between the standard gauge fields and the gravitational field, which must be understood by mathematicians and physicists before attempting such unification. In particular, it is important to understand why gravitation is not a standard gauge field. This book presents an account of the geometrical properties of gauge field theory, while trying to keep the equilibrium between mathematics and physics. At the end we will introduce a similar approach to the gravitational field.
Over the past six decades, several extremely important fields in mathematics have been developed. Among these are Ito calculus, Gaussian measures on Banach spaces, Malliavan calculus, and white noise distribution theory. These subjects have many applications, ranging from finance and economics to physics and biology. Unfortunately, the background information required to conduct research in these subjects presents a tremendous roadblock. The background material primarily stems from an abstract subject known as infinite dimensional topological vector spaces. While this information forms the backdrop for these subjects, the books and papers written about topological vector spaces were never truly written for researchers studying infinite dimensional analysis. Thus, the literature for topological vector spaces is dense and difficult to digest, much of it being written prior to the 1960s. Tools for Infinite Dimensional Analysis aims to address these problems by providing an introduction to the background material for infinite dimensional analysis that is friendly in style and accessible to graduate students and researchers studying the above-mentioned subjects. It will save current and future researchers countless hours and promote research in these areas by removing an obstacle in the path to beginning study in areas of infinite dimensional analysis. Features Focused approach to the subject matter Suitable for graduate students as well as researchers Detailed proofs of primary results
After some decades of work a satisfactory theory of quantum gravity is still not available; moreover, there are indications that the original field theoretical approach may be better suited than originally expected. There, to first approximation, one is left with the problem of quantum field theory on Lorentzian manifolds. Surprisingly, this seemingly modest approach leads to far reaching conceptual and mathematical problems and to spectacular predictions, the most famous one being the Hawking radiation of black holes. Ingredients of this approach are the formulation of quantum physics in terms of C*-algebras, the geometry of Lorentzian manifolds, in particular their causal structure, and linear hyperbolic differential equations where the well-posedness of the Cauchy problem plays a distinguished role, as well as more recently the insights from suitable concepts such as microlocal analysis. This primer is an outgrowth of a compact course given by the editors and contributing authors to an audience of advanced graduate students and young researchers in the field, and assumes working knowledge of differential geometry and functional analysis on the part of the reader.
This work is at the crossroads of a number of mathematical areas, including algebraic geometry, several complex variables, differential geometry, and representation theory. It is the first book to cover complex tori, among the simplest of complex manifolds, which are important to research in the above areas. The book gives a systematic approach to the theory, presents new results, and includes an up-to-date bibliography.
The central theme of this book is the interaction between the curvature of a complete Riemannian manifold and its topology and global geometry.
This volume collects papers based on talks given at the conference "Geometrias'19: Polyhedra and Beyond", held in the Faculty of Sciences of the University of Porto between September 5-7, 2019 in Portugal. These papers explore the conference's theme from an interdisciplinary standpoint, all the while emphasizing the relevance of polyhedral geometry in contemporary academic research and professional practice. They also investigate how this topic connects to mathematics, art, architecture, computer science, and the science of representation. Polyhedra and Beyond will help inspire scholars, researchers, professionals, and students of any of these disciplines to develop a more thorough understanding of polyhedra.
The subject of Tensor Analysis deals with the problem of the formulation of the relation between various entities in forms which remain invariant when we pass from one system of coordinates to another. The invariant form of equation is necessarily related to the possible system of coordinates with reference to which the equation remains invariant. The primary purpose of this book is the study of the invariance form of equation relative to the totally of the rectangular co-ordinate system in the three-dimensional Euclidean space. We start with the consideration of the way the sets representing various entities are transformed when we pass from one system of rectangular co-ordinates to another. A Tensor may be a physical entity that can be described as a Tensor only with respect to the manner of its representation by means of multi-sux sets associated with different system of axes such that the sets associated with different system of co-ordinate obey the transformation law for Tensor. We have employed sux notation for tensors of any order, we could also employ single letter such A,B to denote Tensors.
This monograph presents in a unified manner the use of the Morse index, and especially its connections to the maximum principle, in the study of nonlinear elliptic equations. The knowledge or a bound on the Morse index of a solution is a very important qualitative information which can be used in several ways for different problems, in order to derive uniqueness, existence or nonexistence, symmetry, and other properties of solutions.
Borel’s Conjecture entered the mathematics arena in 1919 as an innocuous remark about sets of real numbers in the context of a new covering property introduced by Émile Borel. In the 100 years since, this conjecture has led to a remarkably rich adventure of discovery in mathematics, producing independent results and the discovery of countable support iterated forcing, developments in infinitary game theory, deep connections with infinitary Ramsey Theory, and significant impact on the study of topological groups and topological covering properties. The papers in this volume present a broad introduction to the frontiers of research that has been spurred on by Borel’s 1919 conjecture and identify fundamental unanswered research problems in the field. Philosophers of science and historians of mathematics can glean from this collection some of the typical trends in the discovery, innovation, and development of mathematical theories.
This book presents concisely the full story on complex and hypercomplex fractals, starting from the very first steps in complex dynamics and resulting complex fractal sets, through the generalizations of Julia and Mandelbrot sets on a complex plane and the Holy Grail of the fractal geometry - a 3D Mandelbrot set, and ending with hypercomplex, multicomplex and multihypercomplex fractal sets which are still under consideration of scientists. I tried to write this book in a possibly simple way in order to make it understandable to most people whose math knowledge covers the fundamentals of complex numbers only. Moreover, the book is full of illustrations of generated fractals and stories concerned with great mathematicians, number spaces and related fractals. In the most cases only information required for proper understanding of a nature of a given vector space or a construction of a given fractal set is provided, nevertheless a more advanced reader may treat this book as a fundamental compendium on hypercomplex fractals with references to purely scientific issues like dynamics and stability of hypercomplex systems. |
![]() ![]() You may like...
Generated Dynamics of Markov and Quantum…
Martin Janssen
Hardcover
A Brief Overview of China's ETS Pilots…
Daiqing Zhao, Wenjun Wang, …
Hardcover
R2,901
Discovery Miles 29 010
The Science and Practice of Resilience
Igor Linkov, Benjamin D. Trump
Hardcover
R4,237
Discovery Miles 42 370
Multicriteria and Multiobjective Models…
Adiel Teixeira de Almeida, Cristiano Alexandre Virginio Cavalcante, …
Hardcover
R4,442
Discovery Miles 44 420
Time Series Analysis - With Applications…
Jonathan D. Cryer, Kung-Sik Chan
Hardcover
R2,742
Discovery Miles 27 420
Multilevel Modeling of Educational Data
Ann O'Connell, D. Betsy McCoach
Hardcover
R3,505
Discovery Miles 35 050
|