![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
This book discusses topics ranging from traditional areas of topology, such as knot theory and the topology of manifolds, to areas such as differential and algebraic geometry. It also discusses other topics such as three-manifolds, group actions, and algebraic varieties.
This book leads readers from a basic foundation to an advanced level understanding of geometry in advanced pure mathematics. Chapter by chapter, readers will be led from a foundation level understanding to advanced level understanding. This is the perfect text for graduate or PhD mathematical-science students looking for support in algebraic geometry, geometric group theory, modular group, holomorphic dynamics and hyperbolic geometry, syzygies and minimal resolutions, and minimal surfaces.Geometry in Advanced Pure Mathematics is the fourth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.
'This book is a useful reference for faculty members involved in contest preparation or teaching Euclidean geometry at the college level.'MAA ReviewsThis new volume of the Mathematical Olympiad Series focuses on the topic of geometry. Basic and advanced theorems commonly seen in Mathematical Olympiad are introduced and illustrated with plenty of examples. Special techniques in solving various types of geometrical problems are also introduced, while the authors elaborate extensively on how to acquire an insight and develop strategies in tackling difficult geometrical problems.This book is suitable for any reader with elementary geometrical knowledge at the lower secondary level. Each chapter includes sufficient scaffolding and is comprehensive enough for the purpose of self-study. Readers who complete the chapters on the basic theorems and techniques would acquire a good foundation in geometry and may attempt to solve many geometrical problems in various mathematical competitions. Meanwhile, experienced contestants in Mathematical Olympiad competitions will find a large collection of problems pitched at competitions at the international level, with opportunities to practise and sharpen their problem-solving skills in geometry.
A veteran math educator reveals the hidden fascinations of geometry and why this staple of math education is important. If you remember anything about high school geometry class, it's probably doing proofs. But geometry is more than axioms, postulates, theorems, and proofs. It's the science of beautiful and extraordinary geometric relationships--most of which is lost in high school classrooms where the focus is on the rigor of logically proving those relationships. This book will awaken readers to the appeal of geometry by placing the focus squarely on geometry's visually compelling features and intrinsic elegance. Who knew that straight lines, circles, and area could be so interesting? Not to mention optical illusions. So get out the rulers, compasses, or even a software program, and discover geometry for the first time.
This book contains selected topics from the history of geometry, with "modern" proofs of some of the results, as well as a fully modern treatment of selected basic issues in geometry. It is geared towards the needs of future mathematics teachers. One of my goals for this book is to open up for the dynamic character of geometry as such, and to extend an invitation to geometry as a gateway to mathematics in general. It is unfortunate that today, at a time when mathematics is more important than ever, phrases like math avoidance and math anxiety are very much in the public vocabulary. Making a serious effort to heal these ills is an essential task. Thus the book also aims at an informed public, interested in making a new beginning in math For the 2nd edition, some of the historical material has been expanded and numerous illustrations have been added, as has a chapter on polyhedra and tessellations and their symmetries. A large number of exercises with some suggestions for solutions is also included.
This book leads readers from a basic foundation to an advanced level understanding of dynamical and complex systems. It is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as applied dynamical systems, Lotka-Volterra dynamical systems, applied dynamical systems theory, dynamical systems in cosmology, aperiodic order, and complex systems dynamics.Dynamical and Complex Systems is the fifth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
This book provides a thorough, intermediate-level yet concise course in Trigonometry for use in colleges. There are 37 short chapters, each treating one specific theme and containing worked examples and easy exercises. Central to the work are the trigonometric properties of triangle ABC and its associated points. A small appendix contains some Spherical Trigonometry with interesting problems related to the earth; a larger one for enthusiastic students provides further lengthier exercises for extra practice, and full solutions are supplied in the conclusion.Compared with other books on Trigonometry, this book covers the vast spread of topics. Especially, the author reminds readers of the historical importance of theorems enunciated by such contributors as Ptolemy, Euler, Morley, etc. Their names not only invite the readers to appreciate the beauty of these results, but also direct readers to mystery unknown.
This book provides a thorough, intermediate-level yet concise course in Trigonometry for use in colleges. There are 37 short chapters, each treating one specific theme and containing worked examples and easy exercises. Central to the work are the trigonometric properties of triangle ABC and its associated points. A small appendix contains some Spherical Trigonometry with interesting problems related to the earth; a larger one for enthusiastic students provides further lengthier exercises for extra practice, and full solutions are supplied in the conclusion.Compared with other books on Trigonometry, this book covers the vast spread of topics. Especially, the author reminds readers of the historical importance of theorems enunciated by such contributors as Ptolemy, Euler, Morley, etc. Their names not only invite the readers to appreciate the beauty of these results, but also direct readers to mystery unknown.
At the present time, the average undergraduate mathematics major finds mathematics heavily compartmentalized. After the calculus, he takes a course in analysis and a course in algebra. Depending upon his interests (or those of his department), he takes courses in special topics. Ifhe is exposed to topology, it is usually straightforward point set topology; if he is exposed to geom etry, it is usually classical differential geometry. The exciting revelations that there is some unity in mathematics, that fields overlap, that techniques of one field have applications in another, are denied the undergraduate. He must wait until he is well into graduate work to see interconnections, presumably because earlier he doesn't know enough. These notes are an attempt to break up this compartmentalization, at least in topology-geometry. What the student has learned in algebra and advanced calculus are used to prove some fairly deep results relating geometry, topol ogy, and group theory. (De Rham's theorem, the Gauss-Bonnet theorem for surfaces, the functorial relation of fundamental group to covering space, and surfaces of constant curvature as homogeneous spaces are the most note worthy examples.) In the first two chapters the bare essentials of elementary point set topology are set forth with some hint ofthe subject's application to functional analysis."
This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori's abelian category of mixed motives. It develops Nori's approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori's unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Recent developments in various algebraic structures and the applications of those in different areas play an important role in Science and Technology. One of the best tools to study the non-linear algebraic systems is the theory of Near-rings.The forward note by G
Trigonometric Functions and Complex Numbers covers the followings areas in the International Mathematical Olympiad (IMO) and other mathematical competitions. The contents are essential for the IMO. A good help for students who want to improve in these areas.
Geometry for the Artist is based on a course of the same name which started in the 1980s at Maharishi International University. It is aimed both at artists willing to dive deeper into geometry and at mathematicians open to learning about applications of mathematics in art. The book includes topics such as perspective, symmetry, topology, fractals, curves, surfaces, and more. A key part of the book's approach is the analysis of art from a geometric point of view-looking at examples of how artists use each new topic. In addition, exercises encourage students to experiment in their own work with the new ideas presented in each chapter. This book is an exceptional resource for students in a general-education mathematics course or teacher-education geometry course, and since many assignments involve writing about art, this text is ideal for a writing-intensive course. Moreover, this book will be enjoyed by anyone with an interest in connections between mathematics and art. Features Abundant examples of artwork displayed in full color. Suitable as a textbook for a general-education mathematics course or teacher-education geometry course. Designed to be enjoyed by both artists and mathematicians.
Geometry for the Artist is based on a course of the same name which started in the 1980s at Maharishi International University. It is aimed both at artists willing to dive deeper into geometry and at mathematicians open to learning about applications of mathematics in art. The book includes topics such as perspective, symmetry, topology, fractals, curves, surfaces, and more. A key part of the book's approach is the analysis of art from a geometric point of view-looking at examples of how artists use each new topic. In addition, exercises encourage students to experiment in their own work with the new ideas presented in each chapter. This book is an exceptional resource for students in a general-education mathematics course or teacher-education geometry course, and since many assignments involve writing about art, this text is ideal for a writing-intensive course. Moreover, this book will be enjoyed by anyone with an interest in connections between mathematics and art. Features Abundant examples of artwork displayed in full color. Suitable as a textbook for a general-education mathematics course or teacher-education geometry course. Designed to be enjoyed by both artists and mathematicians.
This solutions manual thoroughly goes through the exercises found in Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker. Several solutions are accompanied by detailed illustrations and intuitive explanations. This book will pave the way for students to easily grasp the multitude of solution methods and aspects of convex sets and convex functions. Companion Textbook here
This solutions manual thoroughly goes through the exercises found in Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker. Several solutions are accompanied by detailed illustrations and intuitive explanations. This book will pave the way for students to easily grasp the multitude of solution methods and aspects of convex sets and convex functions. Companion Textbook here
Based on lectures held at the 8th edition of the series of summer schools in Villa de Leyva since 1999, this book presents an introduction to topics of current interest at the interface of geometry, algebra, analysis, topology and theoretical physics. It is aimed at graduate students and researchers in physics or mathematics, and offers an introduction to the topics discussed in the two weeks of the summer school: operator algebras, conformal field theory, black holes, relativistic fluids, Lie groupoids and Lie algebroids, renormalization methods, spectral geometry and index theory for pseudo-differential operators.
Trigonometric Functions and Complex Numbers covers the followings areas in the International Mathematical Olympiad (IMO) and other mathematical competitions. The contents are essential for the IMO. A good help for students who want to improve in these areas.
This book provides comprehensive analysis of dynamical systems in tropical geometry, which include the author's significant discoveries and pioneering contributions. Tropical geometry is a kind of dynamical scale transform which connects real rational dynamics with piecewise linear one presented by max and plus algebras. A comparison method is given which estimates orbits corresponding to different rational dynamics by reduction to the piecewise linear dynamics.Both rational and piecewise linear dynamics appear in many important branches of mathematics. Tropical geometry can play a role or function to bridge between different subjects in mathematics. This book contains detailed accounts of basic strategy on how to apply tropical geometry to analysis in various mathematical subjects by presenting several applications which include: a rough classification of partial differential equations from the point of view of global behavior of solutions; construction of the infinite quasi-recursive rational dynamics, based on the automaton of the Burnside group by Aleshin-Grigorchuk; study on nearly periodicity of the pentagram map on the moduli space of the twisted polygons; spectral coincidence between lamplighter group in theory of automata groups and Box and ball systems corresponding to KdV equation in soliton theory.This book is self-contained, and detailed accounts of theory of automata groups, BBS and the pentagram map are also included.
Spaces of constant curvature, i.e. Euclidean space, the sphere, and Loba chevskij space, occupy a special place in geometry. They are most accessible to our geometric intuition, making it possible to develop elementary geometry in a way very similar to that used to create the geometry we learned at school. However, since its basic notions can be interpreted in different ways, this geometry can be applied to objects other than the conventional physical space, the original source of our geometric intuition. Euclidean geometry has for a long time been deeply rooted in the human mind. The same is true of spherical geometry, since a sphere can naturally be embedded into a Euclidean space. Lobachevskij geometry, which in the first fifty years after its discovery had been regarded only as a logically feasible by-product appearing in the investigation of the foundations of geometry, has even now, despite the fact that it has found its use in numerous applications, preserved a kind of exotic and even romantic element. This may probably be explained by the permanent cultural and historical impact which the proof of the independence of the Fifth Postulate had on human thought."
The book introduces the basic notions in Symplectic and Contact Geometry at the level of the second year graduate student. It also contains many exercises, some of which are solved only in the last chapter.We begin with the linear theory, then give the definition of symplectic manifolds and some basic examples, review advanced calculus, discuss Hamiltonian systems, tour rapidly group and the basics of contact geometry, and solve problems in chapter 8. The material just described can be used as a one semester course on Symplectic and Contact Geometry.The book contains also more advanced material, suitable to advanced graduate students and researchers. |
You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R744
Discovery Miles 7 440
|