![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
The literature on the spectral analysis of second order elliptic differential operators contains a great deal of information on the spectral functions for explicitly known spectra. The same is not true, however, for situations where the spectra are not explicitly known. Over the last several years, the author and his colleagues have developed new, innovative methods for the exact analysis of a variety of spectral functions occurring in spectral geometry and under external conditions in statistical mechanics and quantum field theory. Spectral Functions in Mathematics and Physics presents a detailed overview of these advances. The author develops and applies methods for analyzing determinants arising when the external conditions originate from the Casimir effect, dielectric media, scalar backgrounds, and magnetic backgrounds. The zeta function underlies all of these techniques, and the book begins by deriving its basic properties and relations to the spectral functions. The author then uses those relations to develop and apply methods for calculating heat kernel coefficients, functional determinants, and Casimir energies. He also explores applications in the non-relativistic context, in particular applying the techniques to the Bose-Einstein condensation of an ideal Bose gas. Self-contained and clearly written, Spectral Functions in Mathematics and Physics offers a unique opportunity to acquire valuable new techniques, use them in a variety of applications, and be inspired to make further advances.
This book includes selected papers presented at the MIMS (Mediterranean Institute for the Mathematical Sciences) - GGTM (Geometry and Topology Grouping for the Maghreb) conference, held in memory of Mohammed Salah Baouendi, a most renowned figure in the field of several complex variables, who passed away in 2011. All research articles were written by leading experts, some of whom are prize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry.
Designed for a rigorous first course in ordinary differential equations, Ordinary Differential Equations: Introduction and Qualitative Theory, Third Edition includes basic material such as the existence and properties of solutions, linear equations, autonomous equations, and stability as well as more advanced topics in periodic solutions of nonlinear equations. Requiring only a background in advanced calculus and linear algebra, the text is appropriate for advanced undergraduate and graduate students in mathematics, engineering, physics, chemistry, or biology. This third edition of a highly acclaimed textbook provides a detailed account of the Bendixson theory of solutions of two-dimensional nonlinear autonomous equations, which is a classical subject that has become more prominent in recent biological applications. By using the Poincare method, it gives a unified treatment of the periodic solutions of perturbed equations. This includes the existence and stability of periodic solutions of perturbed nonautonomous and autonomous equations (bifurcation theory). The text shows how topological degree can be applied to extend the results. It also explains that using the averaging method to seek such periodic solutions is a special case of the use of the Poincare method.
Symplectic geometry is the geometry underlying Hamiltonian dynamics, and symplectic mappings arise as time-1-maps of Hamiltonian flows. The spectacular rigidity phenomena for symplectic mappings discovered in the last two decades show that certain things cannot be done by a symplectic mapping. For instance, Gromov's famous "non-squeezing'' theorem states that one cannot map a ball into a thinner cylinder by a symplectic embedding. The aim of this book is to show that certain other things can be done by symplectic mappings. This is achieved by various elementary and explicit symplectic embedding constructions, such as "folding," "wrapping'', and "lifting''. These constructions are carried out in detail and are used to solve some specific symplectic embedding problems. The exposition is self-contained and addressed to students and researchers interested in geometry or dynamics.
This introduction to the representation theory of compact Lie groups follows Herman Weyl 's original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.
The analysis and topology of elliptic operators on manifolds with singularities are much more complicated than in the smooth case and require completely new mathematical notions and theories. While there has recently been much progress in the field, many of these results have remained scattered in journals and preprints. Starting from an elementary level and finishing with the most recent results, this book gives a systematic exposition of both analytical and topological aspects of elliptic theory on manifolds with singularities. The presentation includes a review of the main techniques of the theory of elliptic equations, offers a comparative analysis of various approaches to differential equations on manifolds with singularities, and devotes considerable attention to applications of the theory. These include Sobolev problems, theorems of Atiyah-Bott-Lefschetz type, and proofs of index formulas for elliptic operators and problems on manifolds with singularities, including the authors' new solution to the index problem for manifolds with nonisolated singularities. A glossary, numerous illustrations, and many examples help readers master the subject. Clear exposition, up-to-date coverage, and accessibility-even at the advanced undergraduate level-lay the groundwork for continuing studies and further advances in the field.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results. The authors present a complete treatment of the Gage-Hamilton theorem, a clear, detailed exposition of Grayson's convexity theorem, a systematic discussion of invariant solutions, applications to the existence of simple closed geodesics on a surface, and a new, almost convexity theorem for the generalized curve shortening problem. Many questions regarding curve shortening remain outstanding. With its careful exposition and complete guide to the literature, The Curve Shortening Problem provides not only an outstanding starting point for graduate students and new investigations, but a superb reference that presents intriguing new results for those already active in the field.
These 25 papers from a conference held in August 1998 at Pusan National U. provide a broad overview of contemporary group theory, with a particular emphasis on geometric and topological methods. Topics covered include: deformations and rigidity, combinatorial group theory and wild metric complexes, generalized triangle groups, HNN extensions, Eilenberg-Ganea Conjecture, cyclically presented groups, Takahashi manifolds, wreath products, reduction formulae, group actions on graphs and designs, Grushko-Neumann theorem, and variations on a theme of Higman and Conder. Includes a list of the authors and participants with contact information. Conference sponsors included the Korea Science and Engineering Foundation and International Mathematical Union Commission on Development and Exchange. Lacks an index.
The volume consists of invited refereed research papers. The contributions cover a wide spectrum in algebraic geometry, from motives theory to numerical algebraic geometry and are mainly focused on higher dimensional varieties and Minimal Model Program and surfaces of general type. A part of the articles grew out a Conference in memory of Paolo Francia (1951-2000) held in Genova in September 2001 with about 70 participants.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularites, and topological invariants. The authors, both of whom have contributed significantly to the field, develop the classification theory for integrable systems with two degrees of freedom. This theory allows one to distinguish such systems up to two natural equivalence relations: the equivalence of the associated foliation into Liouville tori and the usual orbital equaivalence. The authors show that in both cases, one can find complete sets of invariants that give the solution of the classification problem. The first part of the book systematically presents the general construction of these invariants, including many examples and applications. In the second part, the authors apply the general methods of the classification theory to the classical integrable problems in rigid body dynamics and describe their topological portraits, bifurcations of Liouville tori, and local and global topological invariants. They show how the classification theory helps find hidden isomorphisms between integrable systems and present as an example their proof that two famous systems--the Euler case in rigid body dynamics and the Jacobi problem of geodesics on the ellipsoid--are orbitally equivalent. Integrable Hamiltonian Systems: Geometry, Topology, Classification offers a unique opportunity to explore important, previously unpublished results and acquire generally applicable techniques and tools that enable you to work with a broad class of integrable systems.
The aim of this monograph is to give an overview of various classes of in?ni- dimensional Lie groups and their applications, mostly in Hamiltonian - chanics, ?uid dynamics, integrable systems, and complex geometry. We have chosen to present the unifying ideas of the theory by concentrating on speci?c typesandexamplesofin?nite-dimensionalLiegroups. Ofcourse, theselection of the topics is largely in?uenced by the taste of the authors, but we hope thatthisselectioniswideenoughtodescribevariousphenomenaarisinginthe geometry of in?nite-dimensional Lie groups and to convince the reader that they are appealing objects to study from both purely mathematical and more applied points of view. This book can be thought of as complementary to the existing more algebraic treatments, in particular, those covering the str- ture and representation theory of in?nite-dimensional Lie algebras, as well as to more analytic ones developing calculus on in?nite-dimensional manifolds. This monograph originated from advanced graduate courses and mi- courses on in?nite-dimensional groups and gauge theory given by the ?rst author at the University of Toronto, at the CIRM in Marseille, and at the Ecole Polytechnique in Paris in 2001-2004. It is based on various classical and recentresultsthathaveshapedthisnewlyemergedpartofin?nite-dimensional geometry and group theory. Our intention was to make the book concise, relatively self-contained, and useful in a graduate course. For this reason, throughout the text, we have included a large number of problems, ranging from simple exercises to open questions
This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment. The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field. The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols. The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, an efficient algorithm for special values of p-adic Rankin triple product L-functions, arithmetic aspects and experimental data of Bianchi groups, a theoretical study of the real Jacobian of modular curves, results on computing weight one modular forms, and more.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This textbook provides a thorough introduction to the differential geometry of parametrized curves and surfaces, along with a wealth of applications to specific architectural elements. Geometric elements in architecture respond to practical, physical and aesthetic needs. Proper understanding of the mathematics underlying the geometry provides control over the construction. This book relates the classical mathematical theory of parametrized curves and surfaces to multiple applications in architecture. The presentation is mathematically complete with numerous figures and animations illustrating the theory, and special attention is given to some of the recent trends in the field. Solved exercises are provided to see the theory in practice. Intended as a textbook for lecture courses, Parametric Geometry of Curves and Surfaces is suitable for mathematically-inclined students in engineering, architecture and related fields, and can also serve as a textbook for traditional differential geometry courses to mathematics students. Researchers interested in the mathematics of architecture or computer-aided design will also value its combination of precise mathematics and architectural examples.
Dirac operators play an important role in several domains of mathematics and physics, for example: index theory, elliptic pseudodifferential operators, electromagnetism, particle physics, and the representation theory of Lie groups. In this essentially self-contained work, the basic ideas underlying the concept of Dirac operators are explored. Starting with Clifford algebras and the fundamentals of differential geometry, the text focuses on two main properties, namely, conformal invariance, which determines the local behavior of the operator, and the unique continuation property dominating its global behavior. Spin groups and spinor bundles are covered, as well as the relations with their classical counterparts, orthogonal groups and Clifford bundles. The chapters on Clifford algebras and the fundamentals of differential geometry can be used as an introduction to the above topics, and are suitable for senior undergraduate and graduate students. The other chapters are also accessible at this level so that this text requires very little previous knowledge of the domains covered. The reader will benefit, however, from some knowledge of complex analysis, which gives the simplest example of a Dirac operator. More advanced readers---mathematical physicists, physicists and mathematicians from diverse areas---will appreciate the fresh approach to the theory as well as the new results on boundary value theory.
This volume presents modern trends in the area of symmetries and their applications based on contributions from the workshop "Lie Theory and Its Applications in Physics", held near Varna, Bulgaria, in June 2015. Traditionally, Lie theory is a tool to build mathematical models for physical systems.Recently, the trend has been towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry, which is very helpful in understanding its structure. Geometrization and symmetries are employed in their widest sense, embracing representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators (PDO), special functions, and others. Furthermore, the necessary tools from functional analysis are included.
The International Mathematical Olympiad (IMO) is the World
Championship Competition for High School students, and is held
annually in a different country. More than eighty countries are
involved.
The reach of algebraic curves in cryptography goes far beyond elliptic curve or public key cryptography yet these other application areas have not been systematically covered in the literature. Addressing this gap, Algebraic Curves in Cryptography explores the rich uses of algebraic curves in a range of cryptographic applications, such as secret sharing, frameproof codes, and broadcast encryption. Suitable for researchers and graduate students in mathematics and computer science, this self-contained book is one of the first to focus on many topics in cryptography involving algebraic curves. After supplying the necessary background on algebraic curves, the authors discuss error-correcting codes, including algebraic geometry codes, and provide an introduction to elliptic curves. Each chapter in the remainder of the book deals with a selected topic in cryptography (other than elliptic curve cryptography). The topics covered include secret sharing schemes, authentication codes, frameproof codes, key distribution schemes, broadcast encryption, and sequences. Chapters begin with introductory material before featuring the application of algebraic curves. |
You may like...
Venice Shall Rise Again - Engineered…
Giuseppe Gambolati, Pietro Teatini
Hardcover
R1,735
Discovery Miles 17 350
Mechanics of Flow-Induced Sound and…
William K. Blake
Paperback
|