![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
This text takes a practical, step-by-step approach to algebraic curves and surface interpolation motivated by the understanding of the many practical applications in engineering analysis, approximation, and curve plotting problems. Because of its usefulness for computing, the algebraic approach is the main theme, but a brief discussion of the synthetic approach is also presented as a way of gaining additional insight before proceeding with the algebraic manipulation. The authors start with simple interpolation, including splines, and extend this in an intuitive fashion to the production of conic sections. They then introduce projective co-ordinates as tools for dealing with higher order curves and singular points. They present many applications and concrete examples, including parabolic interpolation, geometric approximation, and the numerical solution of trajectory problems. In the final chapter they apply the basic theory to the construction of finite element basis functions and surface interpolants over non-regular shapes.
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Groebner bases) and geometry (via quiver theory). Groebner bases serve as effective models for computation in algebras of various types. Although the theory of Groebner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced - with big impact - in the 1990s. Divided into two parts, the book first discusses the theory of Groebner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Groebner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.
In succesion to former international meetings on differential geometry held in Hungary and also as a satellite conference of ECM96, the European Mathematical Congress, a Conference on Differential Geometry took place in Budapest from July 27 to July 30, 1996. The host of the Conference was Lorand Eotvos University. The Conference had the following Programme Committee: D.V. Alekseevsky, J.J. Duistermaat, J. Eells, A. Haefliger, O. Kowalski, S. Marchifava, J. Szenthe, L. Tamassy, L. Vanhecke. The participants came mainly from Europe and their total number was 190. The programme included plenary lectures by J. Eliashberg, S. Gallot, O. Kowalski, B. Leeb, and also 135 lectures in 4 sections. The social events, an opening reception and a farewel party, presented inspiring atmosphere to create scientific contacts and also for fruitful discussions. In preparation of the Conference and during it B. Csikos and G. Moussong were constanly ready to help. The present volume contains detailed versions of lectures presented at the Conference and also a list of participants. The subjects cover a wide variety of topics in differential geometry and its applications and all of them contain essential new developments in their respective subjects. It is my pleasant duty to thank the participants who contributed to the success of the Conference, especially those who offered us their manuscripts for publication and also the referees who made several important observa tions. The preparation of the volume was managed with the assistance of E. Daroczy-Kiss."
Based on the subjects from the Clay Mathematics Institute/Mathematical Sciences Research Institute Workshop titled 'Recent Progress in Dynamics' in September and October 2004, this volume contains surveys and research articles by leading experts in several areas of dynamical systems that have experienced substantial progress. One of the major surveys is on symplectic geometry, which is closely related to classical mechanics and an exciting addition to modern geometry. The survey on local rigidity of group actions gives a broad and up-to-date account of another flourishing subject. Other papers cover hyperbolic, parabolic, and symbolic dynamics as well as ergodic theory. Students and researchers in dynamical systems, geometry, and related areas will find this book fascinating. The book also includes a fifty-page commented problem list that takes the reader beyond the areas covered by the surveys, to inspire and guide further research.
This book is dedicated to the memory of Mikael Passare, an outstanding Swedish mathematician who devoted his life to developing the theory of analytic functions in several complex variables and exploring geometric ideas first-hand. It includes several papers describing Mikael's life as well as his contributions to mathematics, written by friends of Mikael's who share his attitude and passion for science. A major section of the book presents original research articles that further develop Mikael's ideas and which were written by his former students and co-authors. All these mathematicians work at the interface of analysis and geometry, and Mikael's impact on their research cannot be underestimated. Most of the contributors were invited speakers at the conference organized at Stockholm University in his honor. This book is an attempt to express our gratitude towards this great mathematician, who left us full of energy and new creative mathematical ideas.
This textbook provides a full and complete axiomatic development of exactly that part of plane Euclidean geometry that forms the standard content of high school geometry. It begins with a set of points, a measure of distance between pairs of points and ten simple axioms. From there the notions of length, area and angle measure, along with congruence and similarity, are carefully defined and their properties proven as theorems. It concludes with a proof of the consistency of the axioms used and a full description of their models. It is provided in guided inquiry (inquiry-based) format with the intention that students will be active learners, proving the theorems and presenting their proofs to their class with the instructor as a mentor and a guide. The book is written for graduate and advanced undergraduate students interested in teaching secondary school mathematics, for pure math majors interested in learning about the foundations of geometry, for faculty preparing future secondary school teachers and as a reference for any professional mathematician. It is written with the hope of anchoring K-12 geometry in solid modern mathematics, thereby fortifying the teaching of secondary and tertiary geometry with a deep understanding of the subject.
This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group, a theory that is more complicated than the study of the classical non-modular case. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers-an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.
Recent results from high-energy scattering and theoretical developments of string theory require a change in our understanding of the basic structure of space-time. This book is about the advancement of ideas on the stochastic nature of space-time from the 1930s onward. In particular, the author promotes the concept of space as a set of hazy lumps, first introduced by Karl Menger, and constructs a novel framework for statistical behaviour at the microlevel. The various chapters address topics such as space-time fluctuation and random potential, non-local fields, and the origin of stochasticity. Implications in astro-particle physics and cosmology are also explored. Audience: This volume will be of interest to physicists, chemists and mathematicians involved in particle physics, astrophysics and cosmology.
This book provides a gentle introduction to the foundations of Algebraic Geometry, starting from computational topics (ideals and homogeneous ideals, zero loci of ideals) up to increasingly intrinsic and abstract arguments, like 'Algebraic Varieties', whose natural continuation is a more advanced course on the theory of schemes, vector bundles and sheaf-cohomology.Valuable to students studying Algebraic Geometry and Geometry, A First Course in Algebraic Geometry and Algebraic Varieties contains around 60 solved exercises to help students thoroughly understand the theories introduced in the book. Proofs of the results are carried out in full details.Many examples are discussed which reinforces the understanding of both the theoretical elements and their consequences as well as the possible applications of the material.
* Written by an interdisciplinary group of specialists from the arts, humanities and sciences at Oxford University * Suitable for a wide non-academic readership, and will appeal to anyone with an interest in mathematics, science and philosophy.
Fractals are curves or surfaces generated by some repeated process involving successive subdivision, and notions concerning fractal geometry and examples of fractal behaviour are well-known. The present book deals with certain types of fractal geometry which are rather different from typical ones. Recent works have shown that these kinds of fractal spaces are more plentiful than one might have expected. This book will be of interest to graduate students, lecturers, and researchers working in various aspects of geometry and analysis.
This volume is an outcome of the workshop "Moduli of K-stable Varieties", which was held in Rome, Italy in 2017. The content focuses on the existence problem for canonical Kahler metrics and links to the algebro-geometric notion of K-stability. The book includes both surveys on this problem, notably in the case of Fano varieties, and original contributions addressing this and related problems. The papers in the latter group develop the theory of K-stability; explore canonical metrics in the Kahler and almost-Kahler settings; offer new insights into the geometric significance of K-stability; and develop tropical aspects of the moduli space of curves, the singularity theory necessary for higher dimensional moduli theory, and the existence of minimal models. Reflecting the advances made in the area in recent years, the survey articles provide an essential overview of many of the most important findings. The book is intended for all advanced graduate students and researchers who want to learn about recent developments in the theory of moduli space, K-stability and Kahler-Einstein metrics.
* Written by an interdisciplinary group of specialists from the arts, humanities and sciences at Oxford University * Suitable for a wide non-academic readership, and will appeal to anyone with an interest in mathematics, science and philosophy.
This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summary of the author's original work on graph embeddings, this book is an essential reference for researchers in graph theory. Contents Abstract Graphs Abstract Maps Duality Orientability Orientable Maps Nonorientable Maps Isomorphisms of Maps Asymmetrization Asymmetrized Petal Bundles Asymmetrized Maps Maps within Symmetry Genus Polynomials Census with Partitions Equations with Partitions Upper Maps of a Graph Genera of a Graph Isogemial Graphs Surface Embeddability
Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. This book presents an expository account of seven important topics in Riemann-Finsler geometry, ones which have recently undergone significant development but have not had a detailed pedagogical treatment elsewhere. Each article will open the door to an active area of research, and is suitable for a special topics course in graduate-level differential geometry. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles, and include a variety of instructive examples.
This book offers a reconstruction of the debate on non-Euclidean geometry in neo-Kantianism between the second half of the nineteenth century and the first decades of the twentieth century. Kant famously characterized space and time as a priori forms of intuitions, which lie at the foundation of mathematical knowledge. The success of his philosophical account of space was due not least to the fact that Euclidean geometry was widely considered to be a model of certainty at his time. However, such later scientific developments as non-Euclidean geometries and Einstein's general theory of relativity called into question the certainty of Euclidean geometry and posed the problem of reconsidering space as an open question for empirical research. The transformation of the concept of space from a source of knowledge to an object of research can be traced back to a tradition, which includes such mathematicians as Carl Friedrich Gauss, Bernhard Riemann, Richard Dedekind, Felix Klein, and Henri Poincare, and which finds one of its clearest expressions in Hermann von Helmholtz's epistemological works. Although Helmholtz formulated compelling objections to Kant, the author reconsiders different strategies for a philosophical account of the same transformation from a neo-Kantian perspective, and especially Hermann Cohen's account of the aprioricity of mathematics in terms of applicability and Ernst Cassirer's reformulation of the a priori of space in terms of a system of hypotheses. This book is ideal for students, scholars and researchers who wish to broaden their knowledge of non-Euclidean geometry or neo-Kantianism.
This up-to-date survey of the whole field of topology is the flagship of the topology subseries of the Encyclopaedia. The book gives an overview of various subfields, beginning with the elements and proceeding right up to the present frontiers of research.
Optimization has long been a source of both inspiration and applications for geometers, and conversely, discrete and convex geometry have provided the foundations for many optimization techniques, leading to a rich interplay between these subjects. The purpose of the Workshop on Discrete Geometry, the Conference on Discrete Geometry and Optimization, and the Workshop on Optimization, held in September 2011 at the Fields Institute, Toronto, was to further stimulate the interaction between geometers and optimizers. This volume reflects the interplay between these areas. The inspiring Fejes Toth Lecture Series, delivered by Thomas Hales of the University of Pittsburgh, exemplified this approach. While these fields have recently witnessed a lot of activity and successes, many questions remain open. For example, Fields medalist Stephen Smale stated that the question of the existence of a strongly polynomial time algorithm for linear optimization is one of the most important unsolved problems at the beginning of the 21st century. The broad range of topics covered in this volume demonstrates the many recent and fruitful connections between different approaches, and features novel results and state-of-the-art surveys as well as open problems. "
Theta functions were studied extensively by Ramanujan. This book provides a systematic development of Ramanujan's results and extends them to a general theory. The author's treatment of the subject is comprehensive, providing a detailed study of theta functions and modular forms for levels up to 12. Aimed at advanced undergraduates, graduate students, and researchers, the organization, user-friendly presentation, and rich source of examples, lends this book to serve as a useful reference, a pedagogical tool, and a stimulus for further research. Topics, especially those discussed in the second half of the book, have been the subject of much recent research; many of which are appearing in book form for the first time. Further results are summarized in the numerous exercises at the end of each chapter.
From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970's by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.
In recent years, research in K3 surfaces and Calabi-Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics-in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi-Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi-Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated. Unlike most other conferences, the 2011 Calabi-Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate students and other junior researchers, or as a guide to the subject.
This interdisciplinary volume collects contributions from experts in their respective fields with as common theme diagrams. Diagrams play a fundamental role in the mathematical visualization and philosophical analysis of forms in space. Some of the most interesting and profound recent developments in contemporary sciences, whether in topology, geometry, dynamic systems theory, quantum field theory or string theory, have been made possible by the introduction of new types of diagrams, which, in addition to their essential role in the discovery of new classes of spaces and phenomena, have contributed to enriching and clarifying the meaning of the operations, structures and properties that are at the heart of these spaces and phenomena. The volume gives a closer look at the scope and the nature of diagrams as constituents of mathematical and physical thought, their function in contemporary artistic work, and appraise, in particular, the actual importance of the diagrams of knots, of braids, of fields, of interaction, of strings in topology and geometry, in quantum physics and in cosmology, but also in theory of perception, in plastic arts and in philosophy. The editors carefully curated this volume to be an inspiration to students and researchers in philosophy, phenomenology, mathematics and the sciences, as well as artists, musicians and the general interested audience.
Introduction to Recognition and Deciphering of Patterns is meant to acquaint STEM and non-STEM students with different patterns, as well as to where and when specific patterns arise. In addition, the book teaches students how to recognize patterns and distinguish the similarities and differences between them. Patterns, such as weather patterns, traffic patterns, behavioral patterns, geometric patterns, linguistic patterns, structural patterns, digital patterns, and the like, emerge on an everyday basis, . Recognizing patterns and studying their unique traits are essential for the development and enhancement of our intuitive skills and for strengthening our analytical skills. Mathematicians often apply patterns to get acquainted with new concepts--a technique that can be applied across many disciplines. Throughout this book we explore assorted patterns that emerge from various geometrical configurations of squares, circles, right triangles, and equilateral triangles that either repeat at the same scale or at different scales. The book also analytically examines linear patterns, geometric patterns, alternating patterns, piecewise patterns, summation-type patterns and factorial-type patterns. Deciphering the details of these distinct patterns leads to the proof by induction method, and the book will also render properties of Pascal's triangle and provide supplemental practice in deciphering specific patterns and verifying them. This book concludes with first-order recursive relations: describing sequences as recursive relations, obtaining the general solution by solving an initial value problem, and determining the periodic traits. Features * Readily accessible to a broad audience, including those with limited mathematical background * Especially useful for students in non-STEM disciplines, such as psychology, sociology, economics and business, as well as for liberal arts disciplines and art students.
This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 "Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory", which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved. The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It offers a valuable resource for all researchers, from graduate students through established experts, who are interested in the computational aspects of algebra, geometry, and/or number theory.
This monograph is based on the author's results on the Riemannian ge ometry of foliations with nonnegative mixed curvature and on the geometry of sub manifolds with generators (rulings) in a Riemannian space of nonnegative curvature. The main idea is that such foliated (sub) manifolds can be decom posed when the dimension of the leaves (generators) is large. The methods of investigation are mostly synthetic. The work is divided into two parts, consisting of seven chapters and three appendices. Appendix A was written jointly with V. Toponogov. Part 1 is devoted to the Riemannian geometry of foliations. In the first few sections of Chapter I we give a survey of the basic results on foliated smooth manifolds (Sections 1.1-1.3), and finish in Section 1.4 with a discussion of the key problem of this work: the role of Riemannian curvature in the study of foliations on manifolds and submanifolds." |
You may like...
York Notes for AQA GCSE Rapid Revision…
Susannah White
Paperback
(1)
VR Technologies in Cultural Heritage
Iulian Tanea, Matjaz Gams, …
Hardcover
R1,363
Discovery Miles 13 630
Judgments Over Time - The Interplay of…
Lawrence J. Sanna, Edward C. Chang
Hardcover
R2,012
Discovery Miles 20 120
|