Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Geometry
The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane's formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank the referee for a very careful reading of the manuscript and for a large number of comments with corrections and suggestions for improvement.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
The general principles by which the editors and authors of the present edition have been guided were explained in the preface to the first volume of Mathemat ics of the 19th Century, which contains chapters on the history of mathematical logic, algebra, number theory, and probability theory (Nauka, Moscow 1978; En glish translation by Birkhiiuser Verlag, Basel-Boston-Berlin 1992). Circumstances beyond the control of the editors necessitated certain changes in the sequence of historical exposition of individual disciplines. The second volume contains two chapters: history of geometry and history of analytic function theory (including elliptic and Abelian functions); the size of the two chapters naturally entailed di viding them into sections. The history of differential and integral calculus, as well as computational mathematics, which we had planned to include in the second volume, will form part of the third volume. We remind our readers that the appendix of each volume contains a list of the most important literature and an index of names. The names of journals are given in abbreviated form and the volume and year of publication are indicated; if the actual year of publication differs from the nominal year, the latter is given in parentheses. The book History of Mathematics from Ancient Times to the Early Nineteenth Century in Russian], which was published in the years 1970-1972, is cited in abbreviated form as HM (with volume and page number indicated). The first volume of the present series is cited as Bk. 1 (with page numbers)."
The theory of algebraic function fields over finite fields has its origins in number theory. However, after Goppa's discovery of algebraic geometry codes around 1980, many applications of function fields were found in different areas of mathematics and information theory, such as coding theory, sphere packings and lattices, sequence design, and cryptography. The use of function fields often led to better results than those of classical approaches. This book presents survey articles on some of these new developments. Most of the material is directly related to the interaction between function fields and their various applications; in particular the structure and the number of rational places of function fields are of great significance. The topics focus on material which has not yet been presented in other books or survey articles. Wherever applications are pointed out, a special effort has been made to present some background concerning their use.
This book offers a comprehensive introduction to Subdivision Surface Modeling Technology focusing not only on fundamental theories but also on practical applications. It furthers readers' understanding of the contacts between spline surfaces and subdivision surfaces, enabling them to master the Subdivision Surface Modeling Technology for analyzing subdivision surfaces. Subdivision surface modeling is a popular technology in the field of computer aided design (CAD) and computer graphics (CG) thanks to its ability to model meshes of any topology. The book also discusses some typical Subdivision Surface Modeling Technologies, such as interpolation, fitting, fairing, intersection, as well as trimming and interactive editing. It is a valuable tool, enabling readers to grasp the main technologies of subdivision surface modeling and use them in software development, which in turn leads to a better understanding of CAD/CG software operations.
Can we imagine a world without flowers? Flowers are beautiful, offering us delight in their colour, fragrance and form, as well as their medicinal benefits. Flowers also speak to us in the language of the plant form itself, as cultural symbols in different societies, and at the highest levels of inspiration. In this beautiful and original book, renowned thinker and geometrist Keith Critchlow has chosen to focus on an aspect of flowers that has received perhaps the least attention. This is the flower as teacher of symmetry and geometry (the 'eternal verities', as Plato called them). In this sense, he says, flowers can be treated as sources of remembering -- a way of recalling our own wholeness, as well as awakening our inner power of recognition and consciousness. What is evident in the geometry of the face of a flower can remind us of the geometry that underlies all existence. Working from his own flower photographs and with every geometric pattern hand-drawn, the author reviews the role of flowers within the perspective of our relationship with the natural world. His illuminating study is an attempt to re-engage the human spirit in its intimate relation with all nature.
This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.
This book is an outgrowth of the activities of the Center for Geometry and Mathematical Physics (CGMP) at Penn State from 1996 to 1998. The Center was created in the Mathematics Department at Penn State in the fall of 1996 for the purpose of promoting and supporting the activities of researchers and students in and around geometry and physics at the university. The CGMP brings many visitors to Penn State and has ties with other research groups; it organizes weekly seminars as well as annual workshops The book contains 17 contributed articles on current research topics in a variety of fields: symplectic geometry, quantization, quantum groups, algebraic geometry, algebraic groups and invariant theory, and character istic classes. Most of the 20 authors have talked at Penn State about their research. Their articles present new results or discuss interesting perspec tives on recent work. All the articles have been refereed in the regular fashion of excellent scientific journals. Symplectic geometry, quantization and quantum groups is one main theme of the book. Several authors study deformation quantization. As tashkevich generalizes Karabegov's deformation quantization of Kahler manifolds to symplectic manifolds admitting two transverse polarizations, and studies the moment map in the case of semisimple coadjoint orbits. Bieliavsky constructs an explicit star-product on holonomy reducible sym metric coadjoint orbits of a simple Lie group, and he shows how to con struct a star-representation which has interesting holomorphic properties."
Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other areas. The book gives an overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers. It should also be of use to people working in other areas of mathematics and in the applied fields.
Over the last fifteen years fractal geometry has established itself as a substantial mathematical theory in its own right. The interplay between fractal geometry, analysis and stochastics has highly influenced recent developments in mathematical modeling of complicated structures. This process has been forced by problems in these areas related to applications in statistical physics, biomathematics and finance. This book is a collection of survey articles covering many of the most recent developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals. The authors were the keynote speakers at the conference "Fractal Geometry and Stochastics IV" at Greifswald in September 2008.
Invariant, or coordinate-free methods provide a natural framework for many geometric questions. Invariant Methods in Discrete and Computational Geometry provides a basic introduction to several aspects of invariant theory, including the supersymmetric algebra, the Grassmann-Cayler algebra, and Chow forms. It also presents a number of current research papers on invariant theory and its applications to problems in geometry, such as automated theorem proving and computer vision. Audience: Researchers studying mathematics, computers and robotics.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This is an English translation of the now classic "Algèbre Locale - Multiplicités" originally published by Springer as LNM 11, in several editions since 1965. It gives a short account of the main theorems of commutative algebra, with emphasis on modules, homological methods and intersection multiplicities ("Tor-formula"). Many modifications to the original French text have been made by the author for this English edition: they make the text easier to read, without changing its intended informal character.
This book features selected papers from The Seventh International Conference on Research and Education in Mathematics that was held in Kuala Lumpur, Malaysia from 25 - 27th August 2015. With chapters devoted to the most recent discoveries in mathematics and statistics and serve as a platform for knowledge and information exchange between experts from academic and industrial sectors, it covers a wide range of topics, including numerical analysis, fluid mechanics, operation research, optimization, statistics and game theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists, and provides an excellent overview of the latest research in mathematical sciences.
This volume is devoted to various aspects of Alexandrov Geometry for those wishing to get a detailed picture of the advances in the field. It contains enhanced versions of the lecture notes of the two mini-courses plus those of one research talk given at CIMAT. Peter Petersen's part aims at presenting various rigidity results about Alexandrov spaces in a way that facilitates the understanding by a larger audience of geometers of some of the current research in the subject. They contain a brief overview of the fundamental aspects of the theory of Alexandrov spaces with lower curvature bounds, as well as the aforementioned rigidity results with complete proofs. The text from Fernando Galaz-Garci a's minicourse was completed in collaboration with Jesu s Nun ez-Zimbro n. It presents an up-to-date and panoramic view of the topology and geometry of 3-dimensional Alexandrov spaces, including the classification of positively and non-negatively curved spaces and the geometrization theorem. They also present Lie group actions and their topological and equivariant classifications as well as a brief account of results on collapsing Alexandrov spaces. Jesu s Nun ez-Zimbro n's contribution surveys two recent developments in the understanding of the topological and geometric rigidity of singular spaces with curvature bounded below.
This professional treatise on engineering graphics emphasizes engineering geometry as the theoretical foundation for communication of design ideas with real world structures and products. It considers each theoretical notion of engineering geometry as a complex solution of direct- and inverse-problems of descriptive geometry and each solution of basic engineering problems presented is accompanied by construction of biunique two- and three-dimension models of geometrical images. The book explains the universal structure of formal algorithms of the solutions of positional, metric, and axonometric problems, as well as the solutions of problems of construction in developing a curvilinear surface. The book further characterizes and explains the added laws of projective connections to facilitate construction of geometrical images in any of eight octants. Laws of projective connections allow constructing the complex drawing of a geometrical image in the American system of measurement and the European system of measurement without errors and mistakes. The arrangement of projections of a geometrical image on the complex drawing corresponds to an arrangement of views of a product in the projective drawing for the European system of measurement. The volume is ideal for engineers working on a range of design projects as well as for students of civil, structural, and industrial engineering and engineering design.
OverthemillenniaDiophantineequationshavesuppliedanextremelyfertilesource ofproblems. Their study hasilluminated everincreasingpoints ofcontactbetween very di?erent subject areas, including algebraic geometry, mathematical logic, - godictheoryandanalyticnumber theory. Thefocus ofthis bookisonthe interface of algebraic geometry with analytic number theory, with the basic aim being to highlight the ro le that analytic number theory has to play in the study of D- phantine equations. Broadly speaking, analytic number theory can be characterised as a subject concerned with counting interesting objects. Thus, in the setting of Diophantine geometry, analytic number theory is especially suited to questions concerning the "distribution" of integral and rational points on algebraic varieties. Determining the arithmetic of a?ne varieties, both qualitatively and quantitatively, is much more complicated than for projective varieties. Given the breadth of the domain and the inherent di?culties involved, this book is therefore dedicated to an exp- ration of the projective setting. This book is based on a short graduate course given by the author at the I. C. T. P School and Conference on Analytic Number Theory, during the period 23rd April to 11th May, 2007. It is a pleasure to thank Professors Balasubra- nian, Deshouillers and Kowalski for organising this meeting. Thanks are also due to Michael Harvey and Daniel Loughran for spotting several typographical errors in an earlier draft of this book. Over the years, the author has greatly bene?ted fromdiscussing mathematicswithProfessorsde la Bret' eche,Colliot-Th' el' ene,F- vry, Hooley, Salberger, Swinnerton-Dyer and Wooley.
This book is devoted to geometric methods in the theory of differential equations with quadratic right-hand sides (Riccati-type equations), which are closely related to the calculus of variations and optimal control theory. Connections of the calculus of variations and the Riccati equation with the geometry of Lagrange-Grassmann manifolds and classical Cartan-Siegel homogeneity domains in a space of several complex variables are considered. In the study of the minimization problem for a multiple integral, a quadratic partial differential equation that is an analogue of the Riccati equation in the calculus of varatiations is studied. This book is based on lectures given by the author ower a period of several years in the Department of Mechanics and Mathematics of Moscow State University. The book is addressed to undergraduate and graduate students, scientific researchers and all specialists interested in the problems of geometry, the calculus of variations, and differential equations.
An incredible season for algebraic geometry flourished in Italy between 1860, when Luigi Cremona was assigned the chair of Geometria Superiore in Bologna, and 1959, when Francesco Severi published the last volume of the treatise on algebraic systems over a surface and an algebraic variety. This century-long season has had a prominent influence on the evolution of complex algebraic geometry - both at the national and international levels - and still inspires modern research in the area. "Algebraic geometry in Italy between tradition and future" is a collection of contributions aiming at presenting some of these powerful ideas and their connection to contemporary and, if possible, future developments, such as Cremonian transformations, birational classification of high-dimensional varieties starting from Gino Fano, the life and works of Guido Castelnuovo, Francesco Severi's mathematical library, etc. The presentation is enriched by the viewpoint of various researchers of the history of mathematics, who describe the cultural milieu and tell about the bios of some of the most famous mathematicians of those times.
The present essay stems from a history of polyhedra from 1750 to 1866 written several years ago (as part of a more general work, not published). So many contradictory statements regarding a Descartes manuscript and Euler, by various mathematicians and historians of mathematics, were encountered that it was decided to write a separate study of the relevant part of the Descartes manuscript on polyhedra. The contemplated short paper grew in size, as only a detailed treatment could be of any value. After it was completed it became evident that the entire manuscript should be treated and the work grew some more. The result presented here is, I hope, a complete, accurate, and fair treatment of the entire manuscript. While some views and conclusions are expressed, this is only done with the facts before the reader, who may draw his or her own conclusions. I would like to express my appreciation to Professors H. S. M. Coxeter, Branko Griinbaum, Morris Kline, and Dr. Heinz-Jiirgen Hess for reading the manuscript and for their encouragement and suggestions. I am especially indebted to Dr. Hess, of the Leibniz-Archiv, for his assistance in connection with the manuscript. I have been greatly helped in preparing the translation ofthe manuscript by the collaboration of a Latin scholar, Mr. Alfredo DeBarbieri. The aid of librarians is indispensable, and I am indebted to a number of them, in this country and abroad, for locating material and supplying copies.
Leonardo da Pisa, perhaps better known as Fibonacci (ca. 1170 ca. 1240), selected the most useful parts of Greco-Arabic geometry for the book known as De Practica Geometrie. This translation offers a reconstruction of De Practica Geometrie as the author judges Fibonacci wrote it, thereby correcting inaccuracies found in numerous modern histories. It is a high quality translation with supplemental text to explain text that has been more freely translated. A bibliography of primary and secondary resources follows the translation, completed by an index of names and special words.
This book is about modern algebraic geometry. The title "A Royal Road to Algebraic Geometry" is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work "Elements." Euclid is said to have answered: ""There is no royal road to geometry" " The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense" there is" a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck's theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime
Geometry is the cornerstone of computer graphics and computer animation, and provides the framework and tools for solving problems in two and three dimensions. This may be in the form of describing simple shapes such as a circle, ellipse, or parabola, or complex problems such as rotating 3D objects about an arbitrary axis. Geometry for Computer Graphics draws together a wide variety of geometric information that will provide a sourcebook of facts, examples, and proofs for students, academics, researchers, and professional practitioners. The book is divided into 4 sections: the first summarizes hundreds of formulae used to solve 2D and 3D geometric problems. The second section places these formulae in context in the form of worked examples. The third provides the origin and proofs of these formulae, and communicates mathematical strategies for solving geometric problems. The last section is a glossary of terms used in geometry.
"Differential Geometry" offers a concise introduction to some basic notions of modern differential geometry and their applications to solid mechanics and physics. Concepts such as manifolds, groups, fibre bundles and groupoids are first introduced within a purely topological framework. They are shown to be relevant to the description of space-time, configuration spaces of mechanical systems, symmetries in general, microstructure and local and distant symmetries of the constitutive response of continuous media. Once these ideas have been grasped at the topological level, the differential structure needed for the description of physical fields is introduced in terms of differentiable manifolds and principal frame bundles. These mathematical concepts are then illustrated with examples from continuum kinematics, Lagrangian and Hamiltonian mechanics, Cauchy fluxes and dislocation theory. This book will be useful for researchers and graduate students in science and engineering. |
You may like...
Researches on Curves of the Second Order…
George Whitehead Hearn
Paperback
R341
Discovery Miles 3 410
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R553
Discovery Miles 5 530
|