![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Invariant, or coordinate-free methods provide a natural framework for many geometric questions. Invariant Methods in Discrete and Computational Geometry provides a basic introduction to several aspects of invariant theory, including the supersymmetric algebra, the Grassmann-Cayler algebra, and Chow forms. It also presents a number of current research papers on invariant theory and its applications to problems in geometry, such as automated theorem proving and computer vision. Audience: Researchers studying mathematics, computers and robotics.
Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other areas. The book gives an overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers. It should also be of use to people working in other areas of mathematics and in the applied fields.
Over the last fifteen years fractal geometry has established itself as a substantial mathematical theory in its own right. The interplay between fractal geometry, analysis and stochastics has highly influenced recent developments in mathematical modeling of complicated structures. This process has been forced by problems in these areas related to applications in statistical physics, biomathematics and finance. This book is a collection of survey articles covering many of the most recent developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals. The authors were the keynote speakers at the conference "Fractal Geometry and Stochastics IV" at Greifswald in September 2008.
This book is devoted to geometric methods in the theory of differential equations with quadratic right-hand sides (Riccati-type equations), which are closely related to the calculus of variations and optimal control theory. Connections of the calculus of variations and the Riccati equation with the geometry of Lagrange-Grassmann manifolds and classical Cartan-Siegel homogeneity domains in a space of several complex variables are considered. In the study of the minimization problem for a multiple integral, a quadratic partial differential equation that is an analogue of the Riccati equation in the calculus of varatiations is studied. This book is based on lectures given by the author ower a period of several years in the Department of Mechanics and Mathematics of Moscow State University. The book is addressed to undergraduate and graduate students, scientific researchers and all specialists interested in the problems of geometry, the calculus of variations, and differential equations.
The present essay stems from a history of polyhedra from 1750 to 1866 written several years ago (as part of a more general work, not published). So many contradictory statements regarding a Descartes manuscript and Euler, by various mathematicians and historians of mathematics, were encountered that it was decided to write a separate study of the relevant part of the Descartes manuscript on polyhedra. The contemplated short paper grew in size, as only a detailed treatment could be of any value. After it was completed it became evident that the entire manuscript should be treated and the work grew some more. The result presented here is, I hope, a complete, accurate, and fair treatment of the entire manuscript. While some views and conclusions are expressed, this is only done with the facts before the reader, who may draw his or her own conclusions. I would like to express my appreciation to Professors H. S. M. Coxeter, Branko Griinbaum, Morris Kline, and Dr. Heinz-Jiirgen Hess for reading the manuscript and for their encouragement and suggestions. I am especially indebted to Dr. Hess, of the Leibniz-Archiv, for his assistance in connection with the manuscript. I have been greatly helped in preparing the translation ofthe manuscript by the collaboration of a Latin scholar, Mr. Alfredo DeBarbieri. The aid of librarians is indispensable, and I am indebted to a number of them, in this country and abroad, for locating material and supplying copies.
This book offers a comprehensive introduction to Subdivision Surface Modeling Technology focusing not only on fundamental theories but also on practical applications. It furthers readers' understanding of the contacts between spline surfaces and subdivision surfaces, enabling them to master the Subdivision Surface Modeling Technology for analyzing subdivision surfaces. Subdivision surface modeling is a popular technology in the field of computer aided design (CAD) and computer graphics (CG) thanks to its ability to model meshes of any topology. The book also discusses some typical Subdivision Surface Modeling Technologies, such as interpolation, fitting, fairing, intersection, as well as trimming and interactive editing. It is a valuable tool, enabling readers to grasp the main technologies of subdivision surface modeling and use them in software development, which in turn leads to a better understanding of CAD/CG software operations.
The book is devoted to the theory of pairs of compact convex sets
and in particular to the problem of finding different types of
minimal representants of a pair of nonempty compact convex subsets
of a locally convex vector space in the sense of the RA
dstrAm-HArmander Theory. Minimal pairs of compact convex sets arise
naturally in different fields of mathematics, as for instance in
non-smooth analysis, set-valued analysis and in the field of
combinatorial convexity.
This book is about modern algebraic geometry. The title "A Royal Road to Algebraic Geometry" is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work "Elements." Euclid is said to have answered: ""There is no royal road to geometry" " The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense" there is" a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck's theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime
OverthemillenniaDiophantineequationshavesuppliedanextremelyfertilesource ofproblems. Their study hasilluminated everincreasingpoints ofcontactbetween very di?erent subject areas, including algebraic geometry, mathematical logic, - godictheoryandanalyticnumber theory. Thefocus ofthis bookisonthe interface of algebraic geometry with analytic number theory, with the basic aim being to highlight the ro le that analytic number theory has to play in the study of D- phantine equations. Broadly speaking, analytic number theory can be characterised as a subject concerned with counting interesting objects. Thus, in the setting of Diophantine geometry, analytic number theory is especially suited to questions concerning the "distribution" of integral and rational points on algebraic varieties. Determining the arithmetic of a?ne varieties, both qualitatively and quantitatively, is much more complicated than for projective varieties. Given the breadth of the domain and the inherent di?culties involved, this book is therefore dedicated to an exp- ration of the projective setting. This book is based on a short graduate course given by the author at the I. C. T. P School and Conference on Analytic Number Theory, during the period 23rd April to 11th May, 2007. It is a pleasure to thank Professors Balasubra- nian, Deshouillers and Kowalski for organising this meeting. Thanks are also due to Michael Harvey and Daniel Loughran for spotting several typographical errors in an earlier draft of this book. Over the years, the author has greatly bene?ted fromdiscussing mathematicswithProfessorsde la Bret' eche,Colliot-Th' el' ene,F- vry, Hooley, Salberger, Swinnerton-Dyer and Wooley.
Leonardo da Pisa, perhaps better known as Fibonacci (ca. 1170 ca. 1240), selected the most useful parts of Greco-Arabic geometry for the book known as De Practica Geometrie. This translation offers a reconstruction of De Practica Geometrie as the author judges Fibonacci wrote it, thereby correcting inaccuracies found in numerous modern histories. It is a high quality translation with supplemental text to explain text that has been more freely translated. A bibliography of primary and secondary resources follows the translation, completed by an index of names and special words.
This volume contains 17 surveys that cover many recent developments in Discrete Geometry and related fields. Besides presenting the state-of-the-art of classical research subjects like packing and covering, it also offers an introduction to new topological, algebraic and computational methods in this very active research field. The readers will find a variety of modern topics and many fascinating open problems that may serve as starting points for research.
Geometry is the cornerstone of computer graphics and computer animation, and provides the framework and tools for solving problems in two and three dimensions. This may be in the form of describing simple shapes such as a circle, ellipse, or parabola, or complex problems such as rotating 3D objects about an arbitrary axis. Geometry for Computer Graphics draws together a wide variety of geometric information that will provide a sourcebook of facts, examples, and proofs for students, academics, researchers, and professional practitioners. The book is divided into 4 sections: the first summarizes hundreds of formulae used to solve 2D and 3D geometric problems. The second section places these formulae in context in the form of worked examples. The third provides the origin and proofs of these formulae, and communicates mathematical strategies for solving geometric problems. The last section is a glossary of terms used in geometry.
It is with pleasure that I write the foreword to this excellent book. A wide range of observations in geology and solid-earth geophysics can be - plained in terms of fractal distributions. In this volume a collection of - pers considers the fractal behavior of the Earth's continental crust. The book begins with an excellent introductory chapter by the editor Dr. V.P. Dimri. Surface gravity anomalies are known to exhibit power-law spectral behavior under a wide range of conditions and scales. This is self-affine fractal behavior. Explanations of this behavior remain controversial. In chapter 2 V.P. Dimri and R.P. Srivastava model this behavior using Voronoi tessellations. Another approach to understanding the structure of the continental crust is to use electromagnetic induction experiments. Again the results often exhibit power law spectral behavior. In chapter 3 K. Bahr uses a fractal based random resister network model to explain the observations. Other examples of power-law spectral observations come from a wide range of well logs using various logging tools. In chapter 4 M. Fedi, D. Fiore, and M. La Manna utilize multifractal models to explain the behavior of well logs from the main KTB borehole in Germany. In chapter 5 V.V. Surkov and H. Tanaka model the electrokinetic currents that may be as- ciated with seismic electric signals using a fractal porous media. In chapter 6 M. Pervukhina, Y. Kuwahara, and H. Ito use fractal n- works to correlate the elastic and electrical properties of porous media.
This book features selected papers from The Seventh International Conference on Research and Education in Mathematics that was held in Kuala Lumpur, Malaysia from 25 - 27th August 2015. With chapters devoted to the most recent discoveries in mathematics and statistics and serve as a platform for knowledge and information exchange between experts from academic and industrial sectors, it covers a wide range of topics, including numerical analysis, fluid mechanics, operation research, optimization, statistics and game theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists, and provides an excellent overview of the latest research in mathematical sciences.
This professional treatise on engineering graphics emphasizes engineering geometry as the theoretical foundation for communication of design ideas with real world structures and products. It considers each theoretical notion of engineering geometry as a complex solution of direct- and inverse-problems of descriptive geometry and each solution of basic engineering problems presented is accompanied by construction of biunique two- and three-dimension models of geometrical images. The book explains the universal structure of formal algorithms of the solutions of positional, metric, and axonometric problems, as well as the solutions of problems of construction in developing a curvilinear surface. The book further characterizes and explains the added laws of projective connections to facilitate construction of geometrical images in any of eight octants. Laws of projective connections allow constructing the complex drawing of a geometrical image in the American system of measurement and the European system of measurement without errors and mistakes. The arrangement of projections of a geometrical image on the complex drawing corresponds to an arrangement of views of a product in the projective drawing for the European system of measurement. The volume is ideal for engineers working on a range of design projects as well as for students of civil, structural, and industrial engineering and engineering design.
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right. "This editi""on" Presents a wealth of models for spatial patterns and related statistical methods.Provides a great survey of the modern theory of random tessellations, including many new models that became tractable only in the last few years.Includes new sections on random networks and random graphs to review the recent ever growing interest in these areas.Provides an excellent introduction to theory and modelling of point processes, which covers some very latest developments.Illustrate the forefront theory of random sets, with many applications.Adds new results to the discussion of fibre and surface processes.Offers an updated collection of useful stereological methods.Includes 700 new references.Is written in an accessible style enabling non-mathematicians to benefit from this book.Provides a companion website hosting information on recent developments in the field www.wiley.com/go/cskm "Stochastic Geometry and its Applications" is ideally suited for researchers in physics, materials science, biology and ecological sciences as well as mathematicians and statisticians. It should also serve as a valuable introduction to the subject for students of mathematics and statistics.
This is a comprehensive introduction into the method of inverse spectra - a powerful method successfully employed in various branches of topology. The notion of an inverse sequence and its limits, first appeared in the well-known memoir by Alexandrov where a special case of inverse spectra - the so-called projective spectra - were considered. The concept of an inverse spectrum in its present form was first introduced by Lefschetz. Meanwhile, Freudental, had introduced the notion of a morphism of inverse spectra. The foundations of the entire method of inverse spectra were laid down in these basic works. Subsequently, inverse spectra began to be widely studied and applied, not only in the various major branches of topology, but also in functional analysis and algebra. This is not surprising considering the categorical nature of inverse spectra and the extraordinary power of the related techniques. Updated surveys (including proofs of several statements) of the Hilbert cube and Hilbert space manifold theories are included in the book. Recent developments of the Menger and Nobeling manifold theories are also presented. This work significantly extends and updates the author's previously published book and has been completely rewritten in order to incorporate new developments in the field.
This volume is devoted to the "hyperbolic theory" of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less "significant" subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are "sufficiently many" such trajectories and the phase space is compact, then although they "tend to diverge from one another" as it were, they "have nowhere to go" and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about "chaos" in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details)."
This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.
The NATO Advanced Study Institute "Axiomatic, enriched and rna tivic homotopy theory" took place at the Isaac Newton Institute of Mathematical Sciences, Cambridge, England during 9-20 September 2002. The Directors were J.P.C.Greenlees and I.Zhukov; the other or ganizers were P.G.Goerss, F.Morel, J.F.Jardine and V.P.Snaith. The title describes the content well, and both the event and the contents of the present volume reflect recent remarkable successes in model categor ies, structured ring spectra and homotopy theory of algebraic geometry. The ASI took the form of a series of 15 minicourses and a few extra lectures, and was designed to provide background, and to bring the par ticipants up to date with developments. The present volume is based on a number of the lectures given during the workshop. The ASI was the opening workshop of the four month programme "New Contexts for Stable Homotopy Theory" which explored several themes in greater depth. I am grateful to the Isaac Newton Institute for providing such an ideal venue, the NATO Science Committee for their funding, and to all the speakers at the conference, whether or not they were able to contribute to the present volume. All contributions were refereed, and I thank the authors and referees for their efforts to fit in with the tight schedule. Finally, I would like to thank my coorganizers and all the staff at the Institute for making the ASI run so smoothly. J.P.C.GREENLEES."
Essentially, Orientations and Rotations treats the mathematical and computational foundations of texture analysis. It contains an extensive and thorough introduction to parameterizations and geometry of the rotation space. Since the notions of orientations and rotations are of primary importance for science and engineering, the book can be useful for a very broad audience using rotations in other fields.
The topics in this survey volume concern research done on the differential geom etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de voted to Hodge theory for the transversal Laplacian and applications of the heat equation method to Riemannian foliations. Chapter 9 on Lie foliations is a prepa ration for the statement of Molino's Structure Theorem for Riemannian foliations in Chapter 10. Some aspects of the spectral theory for Riemannian foliations are discussed in Chapter 11. Connes' point of view of foliations as examples of non commutative spaces is briefly described in Chapter 12. Chapter 13 applies ideas of Riemannian foliation theory to an infinite-dimensional context. Aside from the list of references on Riemannian foliations (items on this list are referred to in the text by [ ]), we have included several appendices as follows. Appendix A is a list of books and surveys on particular aspects of foliations. Appendix B is a list of proceedings of conferences and symposia devoted partially or entirely to foliations. Appendix C is a bibliography on foliations, which attempts to be a reasonably complete list of papers and preprints on the subject of foliations up to 1995, and contains approximately 2500 titles. |
You may like...
Principles Of General Management - A…
Tersia Botha, Cecile Niewenhuizen, …
Paperback
R493
Discovery Miles 4 930
|