![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
This book focuses on the properties of nonlinear systems of PDE with geometrical origin and the natural description in the language of infinite-dimensional differential geometry. The treatment is very informal and the theory is illustrated by various examples from mathematical physics. All necessary information about the infinite-dimensional geometry is given in the text.
One of the worlds foremost geometers, Alan Weinstein has made deep contributions to symplectic and differential geometry, Lie theory, mechanics, and related fields. Written in his honor, the invited papers in this volume reflect the active and vibrant research in these areas and are a tribute to Weinsteins ongoing influence. The well-recognized contributors to this text cover a broad range of topics: Induction and reduction for systems with symmetry, symplectic geometry and topology, geometric quantization, the Weinstein Conjecture, Poisson algebra and geometry, Dirac structures, deformations for Lie group actions, Kahler geometry of moduli spaces, theory and applications of Lagrangian and Hamiltonian mechanics and dynamics, symplectic and Poisson groupoids, and quantum representations.Intended for graduate students and working mathematicians in symplectic and Poisson geometry as well as mechanics, this text is a distillation of prominent research and an indication of the future trends and directions in geometry, mechanics, and mathematical physics.
Schubert varieties provide an inductive tool for studying flag varieties. This book is mainly a detailed account of a particularly interesting instance of their occurrence: namely, in relation to classical invariant theory. More precisely, it is about the connection between the first and second fundamental theorems of classical invariant theory on the one hand and standard monomial theory for Schubert varieties in certain special flag varieties on the other.
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
The moduli space Mg of curves of fixed genus g - that is, the algebraic variety that parametrizes all curves of genus g - is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.
2 Triangle Groups: An Introduction 279 3 Elementary Shimura Curves 281 4 Examples of Shimura Curves 282 5 Congruence Zeta Functions 283 6 Diophantine Properties of Shimura Curves 284 7 Klein Quartic 285 8 Supersingular Points 289 Towers of Elkies 9 289 7. CRYPTOGRAPHY AND APPLICATIONS 291 1 Introduction 291 Discrete Logarithm Problem 2 291 Curves for Public-Key Cryptosystems 3 295 Hyperelliptic Curve Cryptosystems 4 297 CM-Method 5 299 6 Cryptographic Exponent 300 7 Constructive Descent 302 8 Gaudry and Harley Algorithm 306 9 Picard Jacobians 307 Drinfeld Module Based Public Key Cryptosystems 10 308 11 Drinfeld Modules and One Way Functions 308 12 Shimura's Map 309 13 Modular Jacobians of Genus 2 Curves 310 Modular Jacobian Surfaces 14 312 15 Modular Curves of Genus Two 313 16 Hecke Operators 314 8. REFERENCES 317 345 Index Xll Preface The history of counting points on curves over finite fields is very ex- tensive, starting with the work of Gauss in 1801 and continuing with the work of Artin, Schmidt, Hasse and Weil in their study of curves and the related zeta functions Zx(t), where m Zx(t) = exp (2: N t ) m m 2': 1 m with N = #X(F qm). If X is a curve of genus g, Weil's conjectures m state that L(t) Zx(t) = (1 - t)(l - qt) where L(t) = rr~!l (1 - O'.
This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of "abstract" notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful theory. The original French text Introduction aux varietes differentielles has been a best-seller in its category in France for many years. Jacques Lafontaine was successively assistant Professor at Paris Diderot University and Professor at the University of Montpellier, where he is presently emeritus. His main research interests are Riemannian and pseudo-Riemannian geometry, including some aspects of mathematical relativity. Besides his personal research articles, he was involved in several textbooks and research monographs.
The theory of foliations and contact forms have experienced such great de velopment recently that it is natural they have implications in the field of mechanics. They form part of the framework of what Jean Dieudonne calls "Elie Cartan's great theory ofthe Pfaffian systems," and which even nowa days is still far from being exhausted. The major reference work is. without any doubt that of Elie Cartan on Pfaffian systems with five variables. In it one discovers there the bases of an algebraic classification of these systems, their methods of reduction, and the highlighting ofthe first fundamental in variants. This work opens to us, even today, a colossal field of investigation and the mystery of a ternary form containing the differential invariants of the systems with five variables always deligthts anyone who wishes to find out about them. One of the goals of this memorandum is to present this work of Cartan - which was treated even more analytically by Goursat in its lectures on Pfaffian systems - in order to expound the classifications currently known. The theory offoliations and contact forms appear in the study ofcompletely integrable Pfaffian systems of rank one. In each of these situations there is a local model described either by Frobenius' theorem, or by Darboux' theorem. It is this type of theorem which it would be desirable to have for a non-integrable Pfaffian system which may also be of rank greater than one."
This book serves two purposes. The authors present important
aspects of modern research on the mathematical structure of
Einstein's field equations and they show how to extract their
physical content from them by mathematically exact methods. The
essays are devoted to exact solutions and to the Cauchy problem of
the field equations as well as to post-Newtonian approximations
that have direct physical implications. Further topics concern
quantum gravity and optics in gravitational fields.
This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts and results. The focus is on methods which are both well founded mathematically and efficient in practice. Coverage includes references to open source software and discussion of potential applications of the presented techniques.
Apollonius's Conics was one of the greatest works of advanced mathematics in antiquity. The work comprised eight books, of which four have come down to us in their original Greek and three in Arabic. By the time the Arabic translations were produced, the eighth book had already been lost. In 1710, Edmond Halley, then Savilian Professor of Geometry at Oxford, produced an edition of the Greek text of the Conics of Books I-IV, a translation into Latin from the Arabic versions of Books V-VII, and a reconstruction of Book VIII. The present work provides the first completeEnglish translation of Halley's reconstruction of Book VIII withsupplementary notes on the text. It also contains 1)an introduction discussing aspects of Apollonius's Conics 2) an investigation of Edmond Halley's understanding ofthe nature of his venture into ancient mathematics, and 3) anappendices giving a brief account of Apollonius's approach to conic sections and his mathematical techniques. This book will be of interest to students and researchers interested in the history ofancientGreekmathematics and mathematics in the early modern period."
This book consists of a series of introductory lectures on mirror symmetry and its surrounding topics. These lectures were provided by participants in the PIMS Superschool for Derived Categories and D-branes in July 2016. Together, they form a comprehensive introduction to the field that integrates perspectives from mathematicians and physicists alike. These proceedings provide a pleasant and broad introduction into modern research topics surrounding string theory and mirror symmetry that is approachable to readers new to the subjects. These topics include constructions of various mirror pairs, approaches to mirror symmetry, connections to homological algebra, and physical motivations. Of particular interest is the connection between GLSMs, D-branes, birational geometry, and derived categories, which is explained both from a physical and mathematical perspective. The introductory lectures provided herein highlight many features of this emerging field and give concrete connections between the physics and the math. Mathematical readers will come away with a broader perspective on this field and a bit of physical intuition, while physicists will gain an introductory overview of the developing mathematical realization of physical predictions.
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its Applications on September 2006 is one tangible indication of the interest. This volume of articles captures some of the spirit of the IMA workshop.
Over the course of the last century, the systematic exploration of the relationship between Fourier analysis and other branches of mathematics has lead to important advances in geometry, number theory, and analysis, stimulated in part by Hurwitzs proof of the isoperimetric inequality using Fourier series. This unified, self-contained volume is dedicated to Fourier analysis, convex geometry, and related topics. Specific topics covered include: the geometric properties of convex bodies the study of Radon transforms the geometry of numbers the study of translational tilings using Fourier analysis irregularities in distributions Lattice point problems examined in the context of number theory, probability theory, and Fourier analysis restriction problems for the Fourier transform The book presents both a broad overview of Fourier analysis and convexity as well as an intricate look at applications in some specific settings; it will be useful to graduate students and researchers in harmonic analysis, convex geometry, functional analysis, number theory, computer science, and combinatorial analysis. A wide audience will benefit from the careful demonstration of how Fourier analysis is used
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: structure and representation theory of reductive algebraic monoids monoid schemes and applications of monoids monoids related to Lie theory equivariant embeddings of algebraic groups constructions and properties of monoids from algebraic combinatorics endomorphism monoids induced from vector bundles Hodge-Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly pi-regular.Graduate students as well as researchers working in the fields of algebraic (semi)group theory, algebraic combinatorics, and the theory of algebraic group embeddings will benefit from this unique and broad compilation of some fundamental results in (semi)group theory, algebraic group embeddings, and algebraic combinatorics merged under the umbrella of algebraic monoids.
Homogeneous Finsler Spaces is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduces the most recent developments in the study of Lie groups and homogeneous Finsler spaces, leading the reader to directions for further development. The book contains many interesting results such as a Finslerian version of the Myers-Steenrod Theorem, the existence theorem for invariant non-Riemannian Finsler metrics on coset spaces, the Berwaldian characterization of globally symmetric Finsler spaces, the construction of examples of reversible non-Berwaldian Finsler spaces with vanishing S-curvature, and a classification of homogeneous Randers spaces with isotropic S-curvature and positive flag curvature. Readers with some background in Lie theory or differential geometry can quickly begin studying problems concerning Lie groups and Finsler geometry. "
Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi-particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.
Topics in Knot Theory is a state of the art volume which presents surveys of the field by the most famous knot theorists in the world. It also includes the most recent research work by graduate and postgraduate students. The new ideas presented cover racks, imitations, welded braids, wild braids, surgery, computer calculations and plottings, presentations of knot groups and representations of knot and link groups in permutation groups, the complex plane and/or groups of motions. For mathematicians, graduate students and scientists interested in knot theory.
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. It is particularly these interactions with different fields that make L2-invariants very powerful and exciting. The book presents a comprehensive introduction to this area of research, as well as its most recent results and developments. It is written in a way which enables the reader to pick out a favourite topic and to find the result she or he is interested in quickly and without being forced to go through other material.
Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.
From the reviews: ..". focused mainly on complex differential geometry and holomorphic bundle theory. This is a powerful book, written by a very distinguished contributor to the field" (Contemporary Physics )"the book provides a large amount of background for current research across a spectrum of field. ... requires effort to read but it is worthwhile and rewarding" (New Zealand Math. Soc. Newsletter) " The contents are highly technical and the pace of the exposition is quite fast. Manin is an outstanding mathematician, and writer as well, perfectly at ease in the most abstract and complex situation. With such a guide the reader will be generously rewarded " (Physicalia) This new edition includes an Appendix on developments of the last 10 years, by S. Merkulov.
Geometric constructions have been a popular part of mathematics throughout history. The first chapter here is informal and starts from scratch, introducing all the geometric constructions from high school that have been forgotten or were never learned. The second chapter formalises Plato's game, and examines problems from antiquity such as the impossibility of trisecting an arbitrary angle. After that, variations on Plato's theme are explored: using only a ruler, a compass, toothpicks, a ruler and dividers, a marked rule, or a tomahawk, ending in a chapter on geometric constructions by paperfolding. The author writes in a charming style and nicely intersperses history and philosophy within the mathematics, teaching a little geometry and a little algebra along the way. This is as much an algebra book as it is a geometry book, yet since all the algebra and geometry needed is developed within the text, very little mathematical background is required. This text has been class tested for several semesters with a master's level class for secondary teachers.
'Subdivision' is a way of representing smooth shapes in a computer. A curve or surface (both of which contain an in?nite number of points) is described in terms of two objects. One object is a sequence of vertices, which we visualise as a polygon, for curves, or a network of vertices, which we visualise by drawing the edges or faces of the network, for surfaces. The other object is a set of rules for making denser sequences or networks. When applied repeatedly, the denser and denser sequences are claimed to converge to a limit, which is the curve or surface that we want to represent. This book focusses on curves, because the theory for that is complete enough that a book claiming that our understanding is complete is exactly what is needed to stimulate research proving that claim wrong. Also because there are already a number of good books on subdivision surfaces. The way in which the limit curve relates to the polygon, and a lot of interesting properties of the limit curve, depend on the set of rules, and this book is about how one can deduce those properties from the set of rules, and how one can then use that understanding to construct rules which give the properties that one wants. |
You may like...
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Exploring Animal Behavior in Laboratory…
Heather Zimbler-DeLorenzo, Susan W. Margulis
Paperback
R2,465
Discovery Miles 24 650
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
Advances in Complex Societal…
Mohamed Nemiche, Mohammad Essaaidi
Hardcover
|