Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Geometry
This textbook provides a thorough introduction to the differential geometry of parametrized curves and surfaces, along with a wealth of applications to specific architectural elements. Geometric elements in architecture respond to practical, physical and aesthetic needs. Proper understanding of the mathematics underlying the geometry provides control over the construction. This book relates the classical mathematical theory of parametrized curves and surfaces to multiple applications in architecture. The presentation is mathematically complete with numerous figures and animations illustrating the theory, and special attention is given to some of the recent trends in the field. Solved exercises are provided to see the theory in practice. Intended as a textbook for lecture courses, Parametric Geometry of Curves and Surfaces is suitable for mathematically-inclined students in engineering, architecture and related fields, and can also serve as a textbook for traditional differential geometry courses to mathematics students. Researchers interested in the mathematics of architecture or computer-aided design will also value its combination of precise mathematics and architectural examples.
The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.
This volume is a tribute to Maxim Kontsevich, one of the most original and influential mathematicians of our time. Maxim's vision has inspired major developments in many areas of mathematics, ranging all the way from probability theory to motives over finite fields, and has brought forth a paradigm shift at the interface of modern geometry and mathematical physics. Many of his papers have opened completely new directions of research and led to the solutions of many classical problems. This book collects papers by leading experts currently engaged in research on topics close to Maxim's heart. Contributors: S. Donaldson A. Goncharov D. Kaledin M. Kapranov A. Kapustin L. Katzarkov A. Noll P. Pandit S. Pimenov J. Ren P. Seidel C. Simpson Y. Soibelman R. Thorngren
This book provides a conceptual and computational framework to study how the nervous system exploits the anatomical properties of limbs to produce mechanical function. The study of the neural control of limbs has historically emphasized the use of optimization to find solutions to the muscle redundancy problem. That is, how does the nervous system select a specific muscle coordination pattern when the many muscles of a limb allow for multiple solutions? I revisit this problem from the emerging perspective of neuromechanics that emphasizes finding and implementing families of feasible solutions, instead of a single and unique optimal solution. Those families of feasible solutions emerge naturally from the interactions among the feasible neural commands, anatomy of the limb, and constraints of the task. Such alternative perspective to the neural control of limb function is not only biologically plausible, but sheds light on the most central tenets and debates in the fields of neural control, robotics, rehabilitation, and brain-body co-evolutionary adaptations. This perspective developed from courses I taught to engineers and life scientists at Cornell University and the University of Southern California, and is made possible by combining fundamental concepts from mechanics, anatomy, mathematics, robotics and neuroscience with advances in the field of computational geometry. Fundamentals of Neuromechanics is intended for neuroscientists, roboticists, engineers, physicians, evolutionary biologists, athletes, and physical and occupational therapists seeking to advance their understanding of neuromechanics. Therefore, the tone is decidedly pedagogical, engaging, integrative, and practical to make it accessible to people coming from a broad spectrum of disciplines. I attempt to tread the line between making the mathematical exposition accessible to life scientists, and convey the wonder and complexity of neuroscience to engineers and computational scientists. While no one approach can hope to definitively resolve the important questions in these related fields, I hope to provide you with the fundamental background and tools to allow you to contribute to the emerging field of neuromechanics.
This is a new edited volume on shape analysis presenting results in shape modeling and computational geometry from the 2013 Association for Women in Mathematics (AWM) symposium held at UCLA's Institute for Pure and Applied Mathematics (IPAM). In-depth discussion of shape modeling techniques is supplemented by full-color illustrations demonstrating the results of workshop-developed shape modeling algorithms. It will be the first volume in Springer's AWM series.
Teaching Einstein s general relativity at introductory level poses problems because students cannot begin to appreciate the basics of the theory unless they learn a sufficient amount of Riemannian geometry. Most elementary books take the easy course of telling the students a few working rules stripping the mathematical details to a minimum while the advanced books take the mathematical background for granted. Students eager to study Einstein s theory at a deeper level are forced to learn the mathematical background on their own and they feel lost because pure mathematical texts on geometry are too abstract and formal. The present book solves this pedagogical problem in a unique way by dividing the book into three parts. Essential concepts of Riemannian geometry are introduced in Part I (four chapters) through Gauss work on curvature of surfaces using only ordinary calculus. A first acquaintance with Einstein s theory can then be made. Only after this first brush with both physics and mathematics of relativity, a proper, detailed mathematical background is developed in the next six chapters in Part II. The third part then recaptures all the basic concepts of general relativity and leaves the student with a sound preparation for learning advanced topics. My aim has been that after learning from this book a student should not feel discouraged when she opens advanced texts on general relativity for further reading."
This invaluable book, based on the many years of teaching experience of both authors, introduces the reader to the basic ideas in differential topology. Among the topics covered are smooth manifolds and maps, the structure of the tangent bundle and its associates, the calculation of real cohomology groups using differential forms (de Rham theory), and applications such as the PoincariHopf theorem relating the Euler number of a manifold and the index of a vector field. Each chapter contains exercises of varying difficulty for which solutions are provided. Special features include examples drawn from geometric manifolds in dimension 3 and Brieskorn varieties in dimensions 5 and 7, as well as detailed calculations for the cohomology groups of spheres and tori.
Following an initiative of the late Hans Zassenhaus in 1965, the Departments of Mathematics at The Ohio State University and Denison University organize conferences in combinatorics, group theory, and ring theory. Between May 18-21, 2000, the 25th conference of this series was held. Usually, there are twenty to thirty invited 20-minute talks in each of the three main areas. However, at the 2000 meeting, the combinatorics part of the conference was extended, to honor the 65th birthday of Professor Dijen Ray-Chaudhuri. This volulme is the proceedings of this extension. Most of the papers are in coding theory and design theory, reflecting the major interest of Professor Ray-Chaudhuri, but there are articles on association schemes, algebraic graph theory, combinatorial geometry, and network flows as well. There are four surveys and seventeen research articles, and all of these went through a thorough refereeing process. The volume is primarily recommended for researchers and graduate students interested in new developments in coding theory and design theory.
This book contains nine well-organized survey articles by leading researchers in positivity, with a strong emphasis on functional analysis. It provides insight into the structure of classical spaces of continuous functions, f-algebras, and integral operators, but also contains contributions to modern topics like vector measures, operator spaces, ordered tensor products, non-commutative Banach function spaces, and frames. Contributors: B. Banerjee, D.P. Blecher, K. Boulabiar, Q. Bu, G. Buskes, G.P. Curbera, M. Henriksen, A.G. Kusraev, J. Marti-nez, B. de Pagter, W.J. Ricker, A.R. Schep, A. Triki, A.W. Wickstead
This book is an introduction to the theory of elliptic curves, ranging from its most elementary aspects to current research. The first part, which grew out of Tate's Haverford lectures, covers the elementary arithmetic theory of elliptic curves over the rationals. The next two chapters recast the arguments used in the proof of the Mordell theorem into the context of Galois cohomology and descent theory. This is followed by three chapters on the analytic theory of elliptic curves, including such topics as elliptic functions, theta functions, and modular functions. Next, the theory of endomorphisms and elliptic curves over infinite and local fields are discussed. The book then continues by providing a survey of results in the arithmetic theory, especially those related to the conjecture of the Birch and Swinnerton-Dyer. This new edition contains three new chapters which explore recent directions and extensions of the theory of elliptic curves and the addition of two new appendices. The first appendix, written by Stefan Theisan, examines the role of Calabi-Yau manifolds in string theory, while the second, by Otto Forster, discusses the use of elliptic curves in computing theory and coding theory. Dale Husemöller is a member of the faculty at the Max Planck Institute of Mathematics in Bonn.
Clifford, or geometric algebra, provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This book introduces the concepts and framework of Clifford algebra and provides a rich source of examples of how to work with this formalism.
This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference "Geometry and Symmetry" in Veszprem, Hungary from 29 June to 3 July 2015. The conference was dedicated to Karoly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.
Critical Issues in Mathematics Education presents the significant contributions of Professor Alan Bishop within the mathematics education research community. Six critical issues, each of which have had paramount importance in the development of mathematics education research, are reviewed and include a discussion of current developments in each area. Teacher decision making, spatial/visualizing geometry, teachers and research, cultural/social aspects of mathematics education, sociopolitical issues, and values serve as the basic issues discussed in this examination of mathematics education over the last fifty years during which Professor Bishop has been active in the field. A comprehensive discussion of each of these topics is realized by offering the reader a classic research contribution of Professor Bishop s together with commentary and invited chapters from leading experts in the field of mathematics education. Critical Issues in Mathematics Education will make an invaluable contribution to the ongoing reflection of mathematic education researchers worldwide, but also to policy makers and teacher educators who wish to understand some of the key issues with which mathematics education has been and still is concerned, and the context within which Professor Bishop s key contributions to these research issues were made.
In the last decade several international conferences on Finsler, Lagrange and Hamilton geometries were organized in Bra ov, Romania (1994), Seattle, USA (1995), Edmonton, Canada (1998), besides the Seminars that periodically are held in Japan and Romania. All these meetings produced important progress in the field and brought forth the appearance of some reference volumes. Along this line, a new International Conference on Finsler and Lagrange Geometry took place August 26-31,2001 at the "Al.I.Cuza" University in Ia i, Romania. This Conference was organized in the framework of a Memorandum of Un derstanding (1994-2004) between the "Al.I.Cuza" University in Ia i, Romania and the University of Alberta in Edmonton, Canada. It was especially dedicated to Prof. Dr. Peter Louis Antonelli, the liaison officer in the Memorandum, an untired promoter of Finsler, Lagrange and Hamilton geometries, very close to the Romanian School of Geometry led by Prof. Dr. Radu Miron. The dedica tion wished to mark also the 60th birthday of Prof. Dr. Peter Louis Antonelli. With this occasion a Diploma was given to Professor Dr. Peter Louis Antonelli conferring the title of Honorary Professor granted to him by the Senate of the oldest Romanian University (140 years), the "Al.I.Cuza" University, Ia i, Roma nia. There were almost fifty participants from Egypt, Greece, Hungary, Japan, Romania, USA. There were scheduled 45 minutes lectures as well as short communications."
This book presents two natural generalizations of continuous mappings, namely usco and quasicontinuous mappings. The first class considers set-valued mappings, the second class relaxes the definition of continuity. Both these topological concepts stem naturally from basic mathematical considerations and have numerous applications that are covered in detail.
This book constitutes the proceedings of the 2000 Howard conference on "Infinite Dimensional Lie Groups in Geometry and Representation Theory." It presents some important recent developments in this area. It opens with a topological characterization of regular groups, treats among other topics the integrability problem of various infinite dimensional Lie algebras, presents substantial contributions to important subjects in modern geometry, and concludes with interesting applications to representation theory. The book should be a new source of inspiration for advanced graduate students and established researchers in the field of geometry and its applications to mathematical physics.
This volume is an outgrowth of the research project "The Inverse Ga lois Problem and its Application to Number Theory" which was carried out in three academic years from 1999 to 2001 with the support of the Grant-in-Aid for Scientific Research (B) (1) No. 11440013. In September, 2001, an international conference "Galois Theory and Modular Forms" was held at Tokyo Metropolitan University after some preparatory work shops and symposia in previous years. The title of this book came from that of the conference, and the authors were participants of those meet All of the articles here were critically refereed by experts. Some of ings. these articles give well prepared surveys on branches of research areas, and many articles aim to bear the latest research results accompanied with carefully written expository introductions. When we started our re earch project, we picked up three areas to investigate under the key word "Galois groups"; namely, "generic poly nomials" to be applied to number theory, "Galois coverings of algebraic curves" to study new type of representations of absolute Galois groups, and explicitly described "Shimura varieties" to understand well the Ga lois structures of some interesting polynomials including Brumer's sextic for the alternating group of degree 5. The topics of the articles in this volume are widely spread as a result. At a first glance, some readers may think this book somewhat unfocussed."
This is the most comprehensive survey of the mathematical life of the legendary Paul Erdos (1913-1996), one of the most versatile and prolific mathematicians of our time. For the first time, all the main areas of Erdos' research are covered in a single project. Because of overwhelming response from the mathematical community, the project now occupies over 1000 pages, arranged into two volumes. These volumes contain both high level research articles as well as key articles that survey some of the cornerstones of Erdos' work, each written by a leading world specialist in the field. A special chapter "Early Days", rare photographs, and art related to Erdos complement this striking collection. A unique contribution is the bibliography on Erdos' publications: the most comprehensive ever published. This new edition, dedicated to the 100th anniversary of Paul Erdos' birth, contains updates on many of the articles from the two volumes of the first edition, several new articles from prominent mathematicians, a new introduction, and more biographical information about Paul Erdos with an updated list of publications. The second volume contains chapters on graph theory and combinatorics, extremal and Ramsey theory, and a section on infinity that covers Erdos' research on set theory. All of these chapters are essentially updated, particularly the extremal theory chapter that contains a survey of flag algebras, a new technique for solving extremal problems.
Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps.
This book presents the proceedings of the international conference Analytic Aspects in Convexity, which was held in Rome in October 2016. It offers a collection of selected articles, written by some of the world's leading experts in the field of Convex Geometry, on recent developments in this area: theory of valuations; geometric inequalities; affine geometry; and curvature measures. The book will be of interest to a broad readership, from those involved in Convex Geometry, to those focusing on Functional Analysis, Harmonic Analysis, Differential Geometry, or PDEs. The book is a addressed to PhD students and researchers, interested in Convex Geometry and its links to analysis.
This collection of surveys present an overview of recent developments in Complex Geometry. Topics range from curve and surface theory through special varieties in higher dimensions, moduli theory, K hler geometry, and group actions to Hodge theory and characteristic p-geometry. Written by established experts this book will be a must for mathematicians working in Complex Geometry
By bringing together various ideas and methods for extracting the slow manifolds, the authors show that it is possible to establish a more macroscopic description in nonequilibrium systems. The book treats slowness as stability. A unifying geometrical viewpoint of the thermodynamics of slow and fast motion enables the development of reduction techniques, both analytical and numerical. Examples considered in the book range from the Boltzmann kinetic equation and hydrodynamics to the Fokker-Planck equations of polymer dynamics and models of chemical kinetics describing oxidation reactions. Special chapters are devoted to model reduction in classical statistical dynamics, natural selection, and exact solutions for slow hydrodynamic manifolds. The book will be a major reference source for both theoretical and applied model reduction. Intended primarily as a postgraduate-level text in nonequilibrium kinetics and model reduction, it will also be valuable to PhD students and researchers in applied mathematics, physics and various fields of engineering.
A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas of the field, namely Number Theory, Analysis, and Geometry, representing Lang's own breadth of interest and impact. A special introduction by John Tate includes a brief and fascinating account of the Serge Lang's life. This volume's group of 6 editors are also highly prominent mathematicians and were close to Serge Lang, both academically and personally. The volume is suitable to research mathematicians in the areas of Number Theory, Analysis, and Geometry. |
You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R553
Discovery Miles 5 530
|