![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
Designed for a junior-senior level course for mathematics majors, including those who plan to teach in secondary school. The first chapter presents several finite geometries in an axiomatic framework, while Chapter 2 continues the synthetic approach in introducing both Euclids and ideas of non-Euclidean geometry. There follows a new introduction to symmetry and hands-on explorations of isometries that precedes an extensive analytic treatment of similarities and affinities. Chapter 4 presents plane projective geometry both synthetically and analytically, and the new Chapter 5 uses a descriptive and exploratory approach to introduce chaos theory and fractal geometry, stressing the self-similarity of fractals and their generation by transformations from Chapter 3. Throughout, each chapter includes a list of suggested resources for applications or related topics in areas such as art and history, plus this second edition points to Web locations of author-developed guides for dynamic software explorations of the Poincaré model, isometries, projectivities, conics and fractals. Parallel versions are available for "Cabri Geometry" and "Geometers Sketchpad".
In 2006 a special semester on Gr] obner bases and related methods was or- nized by RICAM and RISC, directed by Bruno Buchberger and Heinz Engl. The main focus of the semester were the development of the formal theory of Gr] obner bases (brie?y GB), the e?cient implementation of all algorithms related to this theory, and the promotion of recent and new applications of GB. The workshop D1 "Gr] obner bases in cryptography, coding theory and - gebraic combinatorics," Linz, May 1-6, 2006 (chairmen M. Klin, L. Perret, M. Sala) was one of the main ingredients of the semester. The last two days of this workshop, devoted to combinatorics, made it possible to bring together experts in algorithmic problems related to coherent con?gurations and as- ciation schemes with a community of people working in the area of GB. Each side was interested in understanding the computational problems and current algorithmicpossibilitiesoftheother, withaparticularobjectiveofintroducing the practical use of GB in algebraic combinatorics. Materials (mainly slides of lectures and posters) available from the site http: //www.ricam.oeaw.ac.at/specsem/srs/groeb/schedule D1.htmlprovidea helpful and vivid picture of the successful exchange of scienti?c information during the workshop D1. Asafollow-uptothespecialsemester,10volumesofproceedingsarebeing published by di?erent publishers. The current collection of papers re?ects diverse investigations in the area of algebraic combinatorics (with or without explicit use of GB), but with a de?nite emphasis on algorithmic approaches."
This book illustrates the broad range of Jerry Marsden's mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very applied, but always with a geometric perspective. Each contribution develops its material from the viewpoint of geometric mechanics beginning at the very foundations, introducing readers to modern issues via illustrations in a wide range of topics. The twenty refereed papers contained in this volume are based on lectures and research performed during the month of July 2012 at the Fields Institute for Research in Mathematical Sciences, in a program in honor of Marsden's legacy. The unified treatment of the wide breadth of topics treated in this book will be of interest to both experts and novices in geometric mechanics. Experts will recognize applications of their own familiar concepts and methods in a wide variety of fields, some of which they may never have approached from a geometric viewpoint. Novices may choose topics that interest them among the various fields and learn about geometric approaches and perspectives toward those topics that will be new for them as well.
Despite the fact that Maple V has become one of the most popular computer algebra systems on the market, surprisingly few users realize its potential in the field of scientific visualization. The purpose of this book is to equip the reader with a variety of graphics tools needed on the voyage of discovery into the complex and often beautiful world of curves and surfaces. A comprehensive treatment of Maple's graphics commands and structures is combined with an introduction to the main aspects of visual perception. Top priority is given to the use of light, color, perspective, and geometric transformations. Numerous examples, accompanied by pictures (many in color), cover all aspects of Maple graphics. The examples can be easily customized to suit the individual needs of the reader. The approach is context independent, and as such will appeal to students, educators, and researchers in a broad spectrum of scientific disciplines. For the general user at any level of experience, this book can serve as a comprehensive reference manual. For the beginner, it offers a user- friendly elementary introduction to the subject, with mathematical requirements kept to a minimum. For those interested in advanced mathematical visualization, it explains how to maximize Maple's graphical capabilities. In particular, this book shows how to turn Maple into an excellent modeling tool capable of generating elaborate surfaces that conventional modelers cannot produce. These surfaces can be exported to an external ray tracer (e.g. POV-ray) for sophisticated photo-realistic rendering. All of the Maple code segments which are presented in the book, as well as high-resolution pictures showing alternative renderingsof some of the book's color plates, are included on the accompanying DOS diskette.
Several techniques have been developed in the literature for processing different aspects of the geometry of shapes, for representing and manipulating a shape at different levels of detail, and for describing a shape at a structural level as a concise, part-based, or iconic model. Such techniques are used in many different contexts, such as industrial design, biomedical applications, entertainment, environmental monitoring, or cultural heritage. This book covers a variety of topics related to preserving and enhancing shape information at a geometric level, and to effectively capturing the structure of a shape by identifying relevant shape components and their mutual relationships.
We have tried to design this book for both instructional and reference use, during and after a first course in algebraic topology aimed at users rather than developers; indeed, the book arose from such courses taught by the authors. We start gently, with numerous pictures to illustrate the fundamental ideas and constructions in homotopy theory that are needed in later chapters. A certain amount of redundancy is built in for the reader's convenience: we hope to minimize: fiipping back and forth, and we have provided some appendices for reference. The first three are concerned with background material in algebra, general topology, manifolds, geometry and bundles. Another gives tables of homo topy groups that should prove useful in computations, and the last outlines the use of a computer algebra package for exterior calculus. Our approach has been that whenever a construction from a proof is needed, we have explicitly noted and referenced this. In general, wehavenot given a proof unless it yields something useful for computations. As always, the only way to un derstand mathematics is to do it and use it. To encourage this, Ex denotes either an example or an exercise. The choice is usually up to you the reader, depending on the amount of work you wish to do; however, some are explicitly stated as ( unanswered) questions. In such cases, our implicit claim is that you will greatly benefit from at least thinking about how to answer them."
In this text, integral geometry deals with Radon's problem of representing a function on a manifold in terms of its integrals over certain submanifolds-hence the term the Radon transform. Examples and far-reaching generalizations lead to fundamental problems such as: (i) injectivity, (ii) inversion formulas, (iii) support questions, (iv) applications (e.g., to tomography, partial di erential equations and group representations). For the case of the plane, the inversion theorem and the support theorem have had major applications in medicine through tomography and CAT scanning. While containing some recent research, the book is aimed at beginning graduate students for classroom use or self-study. A number of exercises point to further results with documentation. From the reviews: "Integral Geometry is a fascinating area, where numerous branches of mathematics meet together. the contents of the book is concentrated around the duality and double vibration, which is realized through the masterful treatment of a variety of examples. the book is written by an expert, who has made fundamental contributions to the area." -Boris Rubin, Louisiana State University
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.
With contributions by leading experts in geometric analysis, this volume is documenting the material presented in the John H. Barrett Memorial Lectures held at the University of Tennessee, Knoxville, on May 29 - June 1, 2018. The central topic of the 2018 lectures was mean curvature flow, and the material in this volume covers all recent developments in this vibrant area that combines partial differential equations with differential geometry.
The Bia owie a workshops on Geometric Methods in Physics are among the most important meetings in the field. Every year some 80 to 100 participants from both mathematics and physics join to discuss new developments and to interchange ideas. This volume contains contributions by selected speakers at the XXX meeting in 2011 as well as additional review articles and shows that the workshop remains at the cutting edge of ongoing research. The 2011 workshop focussed on the works of the late Felix A. Berezin (1931 1980) on the occasion of his 80th anniversary as well as on Bogdan Mielnik and Stanis aw Lech Woronowicz on their 75th and 70th birthday, respectively. The groundbreaking work of Berezin is discussed from today s perspective by presenting an overview of his ideas and their impact on further developments. He was, among other fields, active in representation theory, general concepts of quantization and coherent states, supersymmetry and supermanifolds. Another focus lies on the accomplishments of Bogdan Mielnik and Stanis aw Lech Woronowicz. Mielnik s geometricapproach to the description of quantum mixed states, the method of quantum state manipulation and their important implications for quantum computing and quantum entanglement are discussed as well as the intricacies of the quantum time operator. Woronowicz fruitful notion of a compact quantum group and related topics are also addressed."
This volume presents a selection of papers by Henry P. McKean, which illustrate the various areas in mathematics in which he has made seminal contributions. Topics covered include probability theory, integrable systems, geometry and financial mathematics. Each paper represents a contribution by Prof. McKean, either alone or together with other researchers, that has had a profound influence in the respective area.
The object of this book is to introduce the reader to some of the most important techniques of modern global geometry. It mainly deals with global questions and in particular the interdependence of geometry and topology, global and local. Algebraico-topological techniques are developed in the special context of smooth manifolds. The book discusses the DeRham cohomology and its ramifications: Poincare, duality, intersection theory, degree theory, Thom isomorphism, characteristic classes, Gauss-Bonnet etc. The authors seek to calculate the cohomology groups of as many as possible concrete examples without relying on the apparatus of homotopy theory (CW-complexes etc). Elliptic partial differential equations are also featured, requiring a familiarity with functional analysis. It describes the proofs of elliptic Lp and Holder estimates (assuming some deep results of harmonic analysis) for arbitrary elliptic operators with smooth coefficients. The book closes with alook at a class of elliptic operators, the Dirac operators. It discusses their algebraic structure in some detail, Weizenbock formulae and many concrete examples.
The school, the book This book is based on lectures given by the authors of the various chapters in a three week long CIMPA summer school, held in Sophia-Antipolis (near Nice) in July 1992. The first week was devoted to the basics of symplectic and Riemannian geometry (Banyaga, Audin, Lafontaine, Gauduchon), the second was the technical one (Pansu, Muller, Duval, Lalonde and Sikorav). The final week saw the conclusion ofthe school (mainly McDuffand Polterovich, with complementary lectures by Lafontaine, Audin and Sikorav). Globally, the chapters here reflect what happened there. Locally, we have tried to reorganise some ofthe material to make the book more coherent. Hence, for instance, the collective (Audin, Lalonde, Polterovich) chapter on Lagrangian submanifolds and the appendices added to some of the chapters. Duval was not able to write up his lectures, so that genuine complex analysis will not appear in the book, although it is a very current tool in symplectic and contact geometry (and conversely). Hamiltonian systems and variational methods were the subject of some of Sikorav's talks, which he also was not able to write up. On the other hand, F. Labourie, who could not be at the school, wrote a chapter on pseudo-holomorphic curves in Riemannian geometry.
This volume is the conference proceedings of the NATO ARW during August 2001 at Kananaskis Village, Canada on "New Techniques in Topological Quantum Field Theory." This conference brought together specialists from a number of different fields all related to Topological Quantum Field Theory. The theme of this conference was to attempt to find new methods in quantum topology from the interaction with specialists in these other fields. The featured articles include papers by V. Vassiliev on combinatorial formulas for cohomology of spaces of Knots, the computation of Ohtsuki series by N. Jacoby and R. Lawrence, and a paper by M. Asaeda and J. Przytycki on the torsion conjecture for Khovanov homology by Shumakovitch. Moreover, there are articles on more classical topics related to manifolds and braid groups by such well known authors as D. Rolfsen, H. Zieschang and F. Cohen.
This book consists of two lecture notes on geometric flow equations (O. Schnurer) and Lorentzian geometry - holonomy, spinors and Cauchy Problems (H. Baum and T. Leistner) written by leading experts in these fields. It grew out of the summer school "Geometric flows and the geometry of space-time" held in Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics
Written for mathematicians, engineers, and researchers in experimental science, as well as anyone interested in fractals, this book explains the geometrical and analytical properties of trajectories, aggregate contours, geographical coastlines, profiles of rough surfaces, and other curves of finite and fractal length. The approach is by way of precise definitions from which properties are deduced and applications and computational methods are derived. Written without the traditional heavy symbolism of mathematics texts, this book requires two years of calculus while also containing material appropriate for graduate coursework in curve analysis and/or fractal dimension.
This marvelous book of pictures illustrates the fundamental concepts of geometric topology in a way that is very friendly to the reader. The first chapter discusses the meaning of surface and space and gives the classification of orientable surfaces. In the second chapter we are introduced to the Moebius band and surfaces that can be constructed from this non-orientable piece of fabric. In chapter 3, we see how curves can fit in surfaces and how surfaces can fit into spaces with these curves on their boundary. Basic applications to knot theory are discussed and four-dimensional space is introduced.In Chapter 4 we learn about some 3-dimensional spaces and surfaces that sit inside them. These surfaces help us imagine the structures of the larger space.Chapter 5 is completely new! It contains recent results of Cromwell, Izumiya and Marar. One of these results is a formula relating the rank of a surface to the number of triple points. The other major result is a collection of examples of surfaces in 3-space that have one triple point and 6 branch points. These are beautiful generalizations of the Steiner Roman surface.Chapter 6 reviews the movie technique for examining surfaces in 4-dimensional space. Various movies of the Klein bottle are presented, and the Carter-Saito movie move theorem is explained. The author shows us how to turn the 2-sphere inside out by means of these movie moves and this illustration alone is well worth the price of the book!In the last chapter higher dimensional spaces are examined from an elementary point of view.This is a guide book to a wide variety of topics. It will be of value to anyone who wants to understand the subject by way of examples. Undergraduates, beginning graduate students, and non-professionals will profit from reading the book and from just looking at the pictures.
This book offers an advanced course on "Computational Geometry for Ships". It takes into account the recent rapid progress in this field by adapting modern computational methodology to ship geometric applications. Preliminary curve and surface techniques are included to educate engineers in the use of mathematical methods to assist in CAD and other design areas. In addition, there is a comprehensive study of interpolation and approximation techniques, which is reinforced by direct application to ship curve design, ship curve fairing techniques and other related disciplines. The design, evaluation and production of ship surface geometries are further demonstrated by including current and evolving CAD modelling systems.
This volume, dedicated to the eminent mathematician Vladimir Arnold, presents a collection of research and survey papers written on a large spectrum of theories and problems that have been studied or introduced by Arnold himself. Emphasis is given to topics relating to dynamical systems, stability of integrable systems, algebraic and differential topology, global analysis, singularity theory and classical mechanics. A number of applications of Arnold's groundbreaking work are presented. This publication will assist graduate students and research mathematicians in acquiring an in-depth understanding and insight into a wide domain of research of an interdisciplinary nature.
This volume brings together recent, original research and survey articles by leading experts in several fields that include singularity theory, algebraic geometry and commutative algebra. The motivation for this collection comes from the wide-ranging research of the distinguished mathematician, Antonio Campillo, in these and related fields. Besides his influence in the mathematical community stemming from his research, Campillo has also endeavored to promote mathematics and mathematicians' networking everywhere, especially in Spain, Latin America and Europe. Because of his impressive achievements throughout his career, we dedicate this book to Campillo in honor of his 65th birthday. Researchers and students from the world-wide, and in particular Latin American and European, communities in singularities, algebraic geometry, commutative algebra, coding theory, and other fields covered in the volume, will have interest in this book.
This up-to-date monograph, providing an up-to-date overview of the field of Hepatitis Prevention and Treatment, includes contributions from internationally recognized experts on viral hepatitis, and covers the current state of knowledge and practice regarding the molecular biology, immunology, biochemistry, pharmacology and clinical aspects of chronic HBV and HCV infection. The book provides the latest information, with sufficient background and discussion of the literature to benefit the newcomer to the field.
During the last couple of years, fractals have been shown to represent the common aspects of many complex processes occurring in an unusually diverse range of fields including biology, chemistry, earth sciences, physics and technology. Using fractal geometry as a language, it has become possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iteractive functions, colloidal aggregation, biological pattern formation and inhomogenous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.This volume contains a selection of high quality papers that discuss the latest developments in the research of fractals. It is divided into 5 sections and contains altogether 64 papers. Each paper is written by a well known author or authors in the field. Beginning each section is a short introduction, written by a prominent author, which gives a brief overview of the topics discussed in the respective sections.
Stochastic geometry deals with models for random geometric structures. Its early beginnings are found in playful geometric probability questions, and it has vigorously developed during recent decades, when an increasing number of real-world applications in various sciences required solid mathematical foundations. Integral geometry studies geometric mean values with respect to invariant measures and is, therefore, the appropriate tool for the investigation of random geometric structures that exhibit invariance under translations or motions. Stochastic and Integral Geometry provides the mathematically oriented reader with a rigorous and detailed introduction to the basic stationary models used in stochastic geometry random sets, point processes, random mosaics and to the integral geometry that is needed for their investigation. The interplay between both disciplines is demonstrated by various fundamental results. A chapter on selected problems about geometric probabilities and an outlook to non-stationary models are included, and much additional information is given in the section notes."
A new combinatorial foundation of the two concepts, based on a consideration of deep and classical results of homotopy theory, and an axiomatic characterization of the assumptions under which results in this field hold. Includes numerous explicit examples and applications in various fields of topology and algebra.
This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world's leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions. |
You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R744
Discovery Miles 7 440
A Collection of Cambridge Mathematical…
John Martin Frederick Wright
Paperback
R534
Discovery Miles 5 340
|