![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
This book gives a comprehensive account of Moriżs Program, that is an approach to the following problem: classify all the projective varieties X in P^n over C up to isomorphism. Moriżs Program is a fusion of the so-called Minimal Model Program and the Iitaka Program toward the biregular and/or birational classification of higher dimensional algebraic varieties. The author presents this theory in an easy and understandable way with lots of background motivation. It is the first book in this extremely important and active area of research and will become a key resource for graduate students.
Sub-Riemannian geometry (also known as Carnot geometry in France,
and non-holonomic Riemannian geometry in Russia) has been a full
research domain for fifteen years, with motivations and
ramifications in several parts of pure and applied mathematics,
namely:
This proceedings volume covers a range of research topics in algebra from the Southern Regional Algebra Conference (SRAC) that took place in March 2017. Presenting theory as well as computational methods, featured survey articles and research papers focus on ongoing research in algebraic geometry, ring theory, group theory, and associative algebras. Topics include algebraic groups, combinatorial commutative algebra, computational methods for representations of groups and algebras, group theory, Hopf-Galois theory, hypergroups, Lie superalgebras, matrix analysis, spherical and algebraic spaces, and tropical algebraic geometry. Since 1988, SRAC has been an important event for the algebra research community in the Gulf Coast Region and surrounding states, building a strong network of algebraists that fosters collaboration in research and education. This volume is suitable for graduate students and researchers interested in recent findings in computational and theoretical methods in algebra and representation theory.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can us;; Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
Karl Menger, one of the founders of dimension theory, belongs to the most original mathematicians and thinkers of the twentieth century. He was a member of the Vienna Circle and the founder of its mathematical equivalent, the Viennese Mathematical Colloquium. Both during his early years in Vienna and, after his emigration, in the United States, Karl Menger made significant contributions to a wide variety of mathematical fields, and greatly influenced some of his colleagues. The Selecta Mathematica contain Menger's major mathematical papers, based on his own selection from his extensive writings. They deal with topics as diverse as topology, geometry, analysis and algebra, as well as writings on economics, sociology, logic, philosophy and mathematical results. The two volumes are a monument to the diversity and originality of Menger's ideas.
Sir Isaac Newton's philosophi Naturalis Principia Mathematica'(the
Principia) contains a prose-style mixture of geometric and limit
reasoning that has often been viewed as logically vague.
Geometrical Physics in Minkowski Spacetime is an overview and description of the geometry in spacetime, and aids in the creation and development of intuition in four-dimensional Minkowski space. The deepest understanding of relativity and spacetime is in terms of the geometrical absolutes, and this is what the book seeks to develop. The most interesting topics requiring special relativity are covered, including:SpacetimeVectors in SpacetimeElectromagnetismAsymptotic Momentum ConservationCovectors and Dyadics in SpacetimeEnergy Tensor Although the book is not meant for the complete beginner in special relativity, the mathematical prerequisites for the early chapters of the book are very few - linear algebra and elementary geometry (done using vectors and a scalar product). For the later chapters, multivariable calculus and ordinary differential equations are often needed.
NA(c)ron models were invented by A. NA(c)ron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of NA(c)ron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about NA(c)ron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of NA(c)ron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of NA(c)ron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between NA(c)ron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor.
In April of 1996 an array of mathematicians converged on Cambridge, Massachusetts, for the Rotafest and Umbral Calculus Workshop, two con ferences celebrating Gian-Carlo Rota's 64th birthday. It seemed appropriate when feting one of the world's great combinatorialists to have the anniversary be a power of 2 rather than the more mundane 65. The over seventy-five par ticipants included Rota's doctoral students, coauthors, and other colleagues from more than a dozen countries. As a further testament to the breadth and depth of his influence, the lectures ranged over a wide variety of topics from invariant theory to algebraic topology. This volume is a collection of articles written in Rota's honor. Some of them were presented at the Rotafest and Umbral Workshop while others were written especially for this Festschrift. We will say a little about each paper and point out how they are connected with the mathematical contributions of Rota himself."
This book presents an introduction to the geometric theory of infinite dimensional dynamical systems. Many of the fundamental results are presented for asymptotically smooth dynamical systems that have applications to functional differential equations as well as classes of dissipative partial differential equations. However, as in the earlier edition, the major emphasis is on retarded functional differential equations. This updated version also contains much material on neutral functional differential equations. The results in the earlier edition on Morse-Smale systems for maps are extended to a class of semiflows, which include retarded functional differential equations and parabolic partial differential equations.
This textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.
Fundamentals of Convex Analysis offers an in-depth look at some of the fundamental themes covered within an area of mathematical analysis called convex analysis. In particular, it explores the topics of duality, separation, representation, and resolution. The work is intended for students of economics, management science, engineering, and mathematics who need exposure to the mathematical foundations of matrix games, optimization, and general equilibrium analysis. It is written at the advanced undergraduate to beginning graduate level and the only formal preparation required is some familiarity with set operations and with linear algebra and matrix theory. Fundamentals of Convex Analysis is self-contained in that a brief review of the essentials of these tool areas is provided in Chapter 1. Chapter exercises are also provided. Topics covered include: convex sets and their properties; separation and support theorems; theorems of the alternative; convex cones; dual homogeneous systems; basic solutions and complementary slackness; extreme points and directions; resolution and representation of polyhedra; simplicial topology; and fixed point theorems, among others. A strength of this work is how these topics are developed in a fully integrated fashion.
Hans Duistermaat, an influential geometer-analyst, made substantial contributions to the theory of ordinary and partial differential equations, symplectic, differential, and algebraic geometry, minimal surfaces, semisimple Lie groups, mechanics, mathematical physics, and related fields. Written in his honor, the invited and refereed articles in this volume contain important new results as well as surveys in some of these areas, clearly demonstrating the impact of Duistermaat's research and, in addition, exhibiting interrelationships among many of the topics.
By discussing topics such as shape representations, relaxation theory and optimal transport, trends and synergies of mathematical tools required for optimization of geometry and topology of shapes are explored. Furthermore, applications in science and engineering, including economics, social sciences, biology, physics and image processing are covered. Contents Part I Geometric issues in PDE problems related to the infinity Laplace operator Solution of free boundary problems in the presence of geometric uncertainties Distributed and boundary control problems for the semidiscrete Cahn-Hilliard/Navier-Stokes system with nonsmooth Ginzburg-Landau energies High-order topological expansions for Helmholtz problems in 2D On a new phase field model for the approximation of interfacial energies of multiphase systems Optimization of eigenvalues and eigenmodes by using the adjoint method Discrete varifolds and surface approximation Part II Weak Monge-Ampere solutions of the semi-discrete optimal transportation problem Optimal transportation theory with repulsive costs Wardrop equilibria: long-term variant, degenerate anisotropic PDEs and numerical approximations On the Lagrangian branched transport model and the equivalence with its Eulerian formulation On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows Pressureless Euler equations with maximal density constraint: a time-splitting scheme Convergence of a fully discrete variational scheme for a thin-film equatio Interpretation of finite volume discretization schemes for the Fokker-Planck equation as gradient flows for the discrete Wasserstein distance
When we studied complex variables in the late 1960s, modem geometry on the complex fie1d and complex function theory were identified in teaching and research as several complex variables. A beginner in the field at that time would have the experience of jumping from the sheaf-theoretical methods employed in the theory of analytic spaces to the P.D.E. methods of the a problem, with the c1ear understanding that the phenomena lying behind such different methods and problems were the same. A few years later, new important discoveries made c1ear that complex differential geometry was also in the same company. Looking at the historical development of the subject in the first half of the twentieth century shows this was not astonishing. The origin of the theory of functions of several complex variables was tardier than the familiar of analytic functions of one complex variable. The first comprehensive theory textbook by Behnke and Thullen, in the 1930s, expounded the foundations ofthe general theory as set up by Weierstrass, Cousin, Hartogs, and Poincare and c1early put in evidence that the difficulties were all but solved. In aseries of papers from 1936 to 1953, Oka introduced a brilliant collection of new ideas and systematically eliminated aU difficulties. Oka's work had in itse1f a fruitful seed and contained the premises for the opening of wider horizons."
The aim of this book is to provide an introduction to the structure theory of higher dimensional algebraic varieties by studying the geometry of curves, especially rational curves, on varieties. The main applications are in the study of Fano varieties and of related varieties with lots of rational curves on them. This "Ergebnisse" volume provides the first systematic introduction to this field of study. The book contains a large number of examples and exercises which serve to illustrate the range of the methods and also lead to many open questions of current research.
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet 's Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
This book is based on lectures delivered at Harvard in the Spring of 1991 and at the University of Utah during the academic year 1992-93. Formally, the book assumes only general algebraic knowledge (rings, modules, groups, Lie algebras, functors etc.). It is helpful, however, to know some basics of algebraic geometry and representation theory. Each chapter begins with its own introduction, and most sections even have a short overview. The purpose of what follows is to explain the spirit of the book and how different parts are linked together without entering into details. The point of departure is the notion of the left spectrum of an associative ring, and the first natural steps of general theory of noncommutative affine, quasi-affine, and projective schemes. This material is presented in Chapter I. Further developments originated from the requirements of several important examples I tried to understand, to begin with the first Weyl algebra and the quantum plane. The book reflects these developments as I worked them out in reallife and in my lectures. In Chapter 11, we study the left spectrum and irreducible representations of a whole lot of rings which are of interest for modern mathematical physics. The dasses of rings we consider indude as special cases: quantum plane, algebra of q-differential operators, (quantum) Heisenberg and Weyl algebras, (quantum) enveloping algebra ofthe Lie algebra sl(2) , coordinate algebra of the quantum group SL(2), the twisted SL(2) of Woronowicz, so called dispin algebra and many others.
Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: Amoebas and Tropical Geometry These apparently diverse topics have a common feature in that
they are all areas of exciting current activity. The Editors have
attracted an impressive array of leading specialists to author
chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D.
Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko
Honda (USA), P. Ozsvath (USA) and Z. Szabo (USA), C. Simpson
(France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer
(Germany). "One can distinguish various themes running through the
different contributions. There is some emphasis on invariants
defined by elliptic equations and their applications in
low-dimensional topology, symplectic and contact geometry (Bauer,
Seidel, Ozsvath and Szabo). These ideas enter, more tangentially,
in the articles of Joyce, Honda and LeBrun. Here and elsewhere, as
well as explaining the rapid advances that have been made, the
articles convey a wonderful sense of the vast areas lying beyond
our current understanding.
One service mathematics has rendered the human race. It has put common sense back where it belongs. It has put common sense back where it belongs, on the topmost shelf next to the dusty canister labelled discarded nonsense. Eric TBell Every picture tells a story. Advenisement for for Sloan's backache and kidney oils, 1907 The book you have in your hands as you are reading this, is a text on3-dimensional topology. It can serve as a pretty comprehensive text book on the subject. On the other hand, it frequently gets to the frontiers of current research in the topic. If pressed, I would initially classify it as a monograph, but, thanks to the over three hundred illustrations of the geometrical ideas involved, as a rather accessible one, and hence suitable for advanced classes. The style is somewhat informal; more or less like orally presented lectures, and the illustrations more than make up for all the visual aids and handwaving one has at one's command during an actual presentation.
"From nothing I have created a new different world," wrote J nos Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the course of mathematics, opened the way for modern physical theories of the twentieth century, and had an impact on the history of human culture. The papers in this volume, which commemorates the 200th anniversary of the birth of J nos Bolyai, were written by leading scientists of non-Euclidean geometry, its history, and its applications. Some of the papers present new discoveries about the life and works of J nos Bolyai and the history of non-Euclidean geometry, others deal with geometrical axiomatics; polyhedra; fractals; hyperbolic, Riemannian and discrete geometry; tilings; visualization; and applications in physics.
This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.
This EMS volume provides an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor. This book will be very useful as a reference and research guide for researchers and graduate students in algebraic geometry.
This book provides a solid and uniform derivation of the various properties Bézier and B-spline representations have, and shows the beauty of the underlying rich mathematical structure. The book focuses on the core concepts of Computer Aided Geometric Design with the intension to give a clear and illustrative presentation of the basic principles, as well as a treatment of advanced material including multivariate splines, some subdivision techniques and constructions of free form surfaces with arbitrary smoothness.The text is beautifully illustrated with many excellent figures to emphasize the geometric constructive approach of this book. |
You may like...
Functional Analysis and its…
Vladimir Kadets, Wieslaw Tadeusz Zelazko
Hardcover
R4,745
Discovery Miles 47 450
An Operator Perspective on Signals and…
Arthur Frazho, Wisuwat Bhosri
Hardcover
R3,194
Discovery Miles 31 940
Local Fractional Integral Transforms and…
Xiaojun Yang, Dumitru Baleanu, …
Hardcover
R1,806
Discovery Miles 18 060
Introduction to Local Spectral Theory
Kjeld Laursen, Michael Neumann
Hardcover
R7,863
Discovery Miles 78 630
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
(1)
Semigroups, Algebras and Operator Theory…
P. G. Romeo, John C. Meakin, …
Hardcover
|