![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
Thisseries is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.
This volume brings together recent, original research and survey articles by leading experts in several fields that include singularity theory, algebraic geometry and commutative algebra. The motivation for this collection comes from the wide-ranging research of the distinguished mathematician, Antonio Campillo, in these and related fields. Besides his influence in the mathematical community stemming from his research, Campillo has also endeavored to promote mathematics and mathematicians' networking everywhere, especially in Spain, Latin America and Europe. Because of his impressive achievements throughout his career, we dedicate this book to Campillo in honor of his 65th birthday. Researchers and students from the world-wide, and in particular Latin American and European, communities in singularities, algebraic geometry, commutative algebra, coding theory, and other fields covered in the volume, will have interest in this book.
Thisseries is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.
A new combinatorial foundation of the two concepts, based on a consideration of deep and classical results of homotopy theory, and an axiomatic characterization of the assumptions under which results in this field hold. Includes numerous explicit examples and applications in various fields of topology and algebra.
This up-to-date monograph, providing an up-to-date overview of the field of Hepatitis Prevention and Treatment, includes contributions from internationally recognized experts on viral hepatitis, and covers the current state of knowledge and practice regarding the molecular biology, immunology, biochemistry, pharmacology and clinical aspects of chronic HBV and HCV infection. The book provides the latest information, with sufficient background and discussion of the literature to benefit the newcomer to the field.
Stochastic geometry deals with models for random geometric structures. Its early beginnings are found in playful geometric probability questions, and it has vigorously developed during recent decades, when an increasing number of real-world applications in various sciences required solid mathematical foundations. Integral geometry studies geometric mean values with respect to invariant measures and is, therefore, the appropriate tool for the investigation of random geometric structures that exhibit invariance under translations or motions. Stochastic and Integral Geometry provides the mathematically oriented reader with a rigorous and detailed introduction to the basic stationary models used in stochastic geometry random sets, point processes, random mosaics and to the integral geometry that is needed for their investigation. The interplay between both disciplines is demonstrated by various fundamental results. A chapter on selected problems about geometric probabilities and an outlook to non-stationary models are included, and much additional information is given in the section notes."
The central theme of this book is the study of self-dual connections on four-manifolds. The author's aim is to present a lucid introduction to moduli space techniques (for vector bundles with SO (3) as structure group) and to apply them to four-manifolds. The authors have adopted a topologists' perspective. For example, they have included some explicit calculations using the Atiyah-Singer index theorem as well as methods from equivariant topology in the study of the topology of the moduli space. Results covered include Donaldson's Theorem that the only positive definite form which occurs as an intersection form of a smooth four-manifold is the standard positive definite form, as well as those of Fintushel and Stern which show that the integral homology cobordism group of integral homology three-spheres has elements of infinite order. Little previous knowledge of differential geometry is assumed and so postgraduate students and research workers will find this both an accessible and complete introduction to currently one of the most active areas of mathematical research.
This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world's leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions.
This book presents current research on Ulam stability for functional equations and inequalities. Contributions from renowned scientists emphasize fundamental and new results, methods and techniques. Detailed examples are given to theories to further understanding at the graduate level for students in mathematics, physics, and engineering. Key topics covered in this book include: Quasi means Approximate isometries Functional equations in hypergroups Stability of functional equations Fischer-Muszely equation Haar meager sets and Haar null sets Dynamical systems Functional equations in probability theory Stochastic convex ordering Dhombres functional equation Nonstandard analysis and Ulam stability This book is dedicated in memory of Stanilsaw Marcin Ulam, who posed the fundamental problem concerning approximate homomorphisms of groups in 1940; which has provided the stimulus for studies in the stability of functional equations and inequalities.
An impressive collection of original research papers in discrete and computational geometry, contributed by many leading researchers in these fields, as a tribute to Jacob E. Goodman and Richard Pollack, two of the ‘founding fathers’ of the area, on the occasion of their 2/3 x 100 birthdays. The topics covered by the 41 papers provide professionals and graduate students with a comprehensive presentation of the state of the art in most aspects of discrete and computational geometry, including geometric algorithms, study of arrangements, geometric graph theory, quantitative and algorithmic real algebraic geometry, with important connections to algebraic geometry, convexity, polyhedral combinatorics, the theory of packing, covering, and tiling. The book serves as an invaluable source of reference in this discipline.
This text is about the geometric theory of discrete groups and the associated tesselations of the underlying space. The theory of Möbius transformations in n-dimensional Euclidean space is developed. These transformations are discussed as isometries of hyperbolic space and are then identified with the elementary transformations of complex analysis. A detailed account of analytic hyperbolic trigonometry is given, and this forms the basis of the subsequent analysis of tesselations of the hyperbolic plane. Emphasis is placed on the geometrical aspects of the subject and on the universal constraints which must be satisfied by all tesselations.
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.
This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces.
In September 1997, the Working Week on Resolution of Singularities was held at Obergurgl in the Tyrolean Alps. Its objective was to manifest the state of the art in the field and to formulate major questions for future research. The four courses given during this week were written up by the speakers and make up part I of this volume. They are complemented in part II by fifteen selected contributions on specific topics and resolution theories. The volume is intended to provide a broad and accessible introduction to resolution of singularities leading the reader directly to concrete research problems.
The outcome of a close collaboration between mathematicians and mathematical physicists, these Lecture Notes present the foundations of A. Connes noncommutative geometry, as well as its applications in particular to the field of theoretical particle physics. The coherent and systematic approach makes this book useful for experienced researchers and postgraduate students alike.
Introduction to Differential Geometry with applications to Navier-Stokes Dynamics is an invaluable manuscript for anyone who wants to understand and use exterior calculus and differential geometry, the modern approach to calculus and geometry. Author Troy Story makes use of over thirty years of research
experience to provide a smooth transition from conventional
calculus to exterior calculus and differential geometry, assuming
only a knowledge of conventional calculus. Introduction to
Differential Geometry with applications to Navier-Stokes Dynamics
includes the topics:
In March 2000 leading scientists gathered at the Centro Seminariale Monte Verita, Ascona, Switzerland, for the Third International Symposium on "Fractals 2000 in Biology and Medicine." This interdisciplinary conference was held over a four-day period and provided stimulating contributions from the very topical field Fractals in Biology and Medicine. This Volume III in the MBI series highlights the growing power and efficacy of the fractal geometry in understanding how to analyze living phenomena and complex shapes. Many biological objects, previously considered as hopelessly far from any quantitative description, are now being investigated by means of fractal methods. Researchers currently used fractals both as theoretical tools, to shed light on living systems self-organization and evolution, and as useful techniques, capable of quantitatively analyzing physiological and pathological cell states, shapes and ultrastructures. The book should be of interest to researchers and students from Molecular and C"
This book consists of a series of introductory lectures on mirror symmetry and its surrounding topics. These lectures were provided by participants in the PIMS Superschool for Derived Categories and D-branes in July 2016. Together, they form a comprehensive introduction to the field that integrates perspectives from mathematicians and physicists alike. These proceedings provide a pleasant and broad introduction into modern research topics surrounding string theory and mirror symmetry that is approachable to readers new to the subjects. These topics include constructions of various mirror pairs, approaches to mirror symmetry, connections to homological algebra, and physical motivations. Of particular interest is the connection between GLSMs, D-branes, birational geometry, and derived categories, which is explained both from a physical and mathematical perspective. The introductory lectures provided herein highlight many features of this emerging field and give concrete connections between the physics and the math. Mathematical readers will come away with a broader perspective on this field and a bit of physical intuition, while physicists will gain an introductory overview of the developing mathematical realization of physical predictions.
Considering integral transformations of Volterra type, F. Riesz and B. Sz.-Nagy no ticed in 1952 that [49]: "The existence of such a variety of linear transformations, having the same spectrum concentrated at a single point, brings out the difficulties of characterization of linear transformations of general type by means of their spectra." Subsequently, spectral analysis has been developed for different classes of non selfadjoint operators [6,7,14,20,21,36,44,46,54]. It was then realized that this analysis forms a natural basis for the theory of systems interacting with the environment. The success of this theory in the single operator case inspired attempts to create a general theory in the much more complicated case of several commuting operators with finite-dimensional imaginary parts. During the past 10-15 years such a theory has been developed, yielding fruitful connections with algebraic geometry and sys tem theory. Our purpose in this book is to formulate the basic problems appearing in this theory and to present its main results. It is worth noting that, in addition to the joint spectrum, the corresponding algebraic variety and its global topological characteristics play an important role in the classification of commuting operators. For the case of a pair of operators these are: 1. The corresponding algebraic curve, and especially its genus. 2. Certain classes of divisors - or certain line bundles - on this curve.
One of the worlds foremost geometers, Alan Weinstein has made deep contributions to symplectic and differential geometry, Lie theory, mechanics, and related fields. Written in his honor, the invited papers in this volume reflect the active and vibrant research in these areas and are a tribute to Weinsteins ongoing influence. The well-recognized contributors to this text cover a broad range of topics: Induction and reduction for systems with symmetry, symplectic geometry and topology, geometric quantization, the Weinstein Conjecture, Poisson algebra and geometry, Dirac structures, deformations for Lie group actions, Kahler geometry of moduli spaces, theory and applications of Lagrangian and Hamiltonian mechanics and dynamics, symplectic and Poisson groupoids, and quantum representations.Intended for graduate students and working mathematicians in symplectic and Poisson geometry as well as mechanics, this text is a distillation of prominent research and an indication of the future trends and directions in geometry, mechanics, and mathematical physics.
This book contains contributions from a workshop on topology and geometry of polymers, held at the IMA in June 1996, which brought together topologists, combinatorialists, theoretical physicists and polymer scientists, with a common interest in polymer topology. Polymers can be highly self-entangled even in dilute solution. In the melt the inter- and intra-chain entanglements can dominate the rheological properties of these phenomena. Although the possibility of knotting in ring polymers has been recognized for more than thirty years it is only recently that the powerful methods of algebraic topology have been used in treating models of polymers. This book contains a series of chapters which review the current state of the field and give an up to date account of what is known and perhaps more importantly, what is still unknown. The field abounds with open problems. The book is of interest to workers in polymer statistical mechanics but will also be useful as an introduction to topological methods for polymer scientists, and will introduce mathematicians to an area of science where topological approaches are making a substantial contribution. |
![]() ![]() You may like...
Quick Change - Refresh a Room Fast with…
That Patchwork Place
Paperback
Inspirational Applique - Reflections of…
Cheryl Almgren Taylor
Paperback
2023 That Patchwork Place Quilt Calendar…
That Patchwork Place
Calendar
Candy Store and More - 1930s Quilts Made…
Karen Earlywine, Kay Connors
Paperback
|