![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
This volume includes 28 chapters by authors who are leading researchers of the world describing many of the up-to-date aspects in the field of several complex variables (SCV). These contributions are based upon their presentations at the 10th Korean Conference on Several Complex Variables (KSCV10), held as a satellite conference to the International Congress of Mathematicians (ICM) 2014 in Seoul, Korea. SCV has been the term for multidimensional complex analysis, one of the central research areas in mathematics. Studies over time have revealed a variety of rich, intriguing, new knowledge in complex analysis and geometry of analytic spaces and holomorphic functions which were "hidden" in the case of complex dimension one. These new theories have significant intersections with algebraic geometry, differential geometry, partial differential equations, dynamics, functional analysis and operator theory, and sheaves and cohomology, as well as the traditional analysis of holomorphic functions in all dimensions. This book is suitable for a broad audience of mathematicians at and above the beginning graduate-student level. Many chapters pose open-ended problems for further research, and one in particular is devoted to problems for future investigations.
New Approaches to Circle Packing into the Square is devoted to the most recent results on the densest packing of equal circles in a square. In the last few decades, many articles have considered this question, which has been an object of interest since it is a hard challenge both in discrete geometry and in mathematical programming. The authors have studied this geometrical optimization problem for a long time, and they developed several new algorithms to solve it. The book completely covers the investigations on this topic.
"Singular Loci of Schubert Varieties" is a unique work at the crossroads of representation theory, algebraic geometry, and combinatorics. Over the past 20 years, many research articles have been written on the subject in notable journals. In this work, Billey and Lakshmibai have recreated and restructured the various theories and approaches of those articles and present a clearer understanding of this important subdiscipline of Schubert varieties a" namely singular loci. The main focus, therefore, is on the computations for the singular loci of Schubert varieties and corresponding tangent spaces. The methods used include standard monomial theory, the nil Hecke ring, and Kazhdan-Lusztig theory. New results are presented with sufficient examples to emphasize key points. A comprehensive bibliography, index, and tables a" the latter not to be found elsewhere in the mathematics literature a" round out this concise work. After a good introduction giving background material, the topics are presented in a systematic fashion to engage a wide readership of researchers and graduate students.
This book provides a self-contained introduction to diagram geometry. Tight connections with group theory are shown. It treats thin geometries (related to Coxeter groups) and thick buildings from a diagrammatic perspective. Projective and affine geometry are main examples. Polar geometry is motivated by polarities on diagram geometries and the complete classification of those polar geometries whose projective planes are Desarguesian is given. It differs from Tits' comprehensive treatment in that it uses Veldkamp's embeddings. The book intends to be a basic reference for those who study diagram geometry. Group theorists will find examples of the use of diagram geometry. Light on matroid theory is shed from the point of view of geometry with linear diagrams. Those interested in Coxeter groups and those interested in buildings will find brief but self-contained introductions into these topics from the diagrammatic perspective. Graph theorists will find many highly regular graphs. The text is written so graduate students will be able to follow the arguments without needing recourse to further literature. A strong point of the book is the density of examples.
The subject of algebraic cycles has thrived through its interaction with algebraic K-theory, Hodge theory, arithmetic algebraic geometry, number theory, and topology. These interactions have led to such developments as a description of Chow groups in terms of algebraic K-theory, the arithmetic Abel-Jacobi mapping, progress on the celebrated conjectures of Hodge and Tate, and the conjectures of Bloch and Beilinson. The immense recent progress in algebraic cycles, based on so many interactions with so many other areas of mathematics, has contributed to a considerable degree of inaccessibility, especially for graduate students. Even specialists in one approach to algebraic cycles may not understand other approaches well. This book offers students and specialists alike a broad perspective of algebraic cycles, presented from several viewpoints, including arithmetic, transcendental, topological, motives and K-theory methods. Topics include a discussion of the arithmetic Abel-Jacobi mapping, higher Abel-Jacobi regulator maps, polylogarithms and L-series, candidate Bloch-Beilinson filtrations, applications of Chern-Simons invariants to algebraic cycles via the study of algebraic vector bundles with algebraic connection, motivic cohomology, Chow groups of singular varieties, and recent progress on the Hodge and Tate conjectures for Abelian varieties.
This book is devoted to a rather complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.
This volume constitutes the proceedings of a workshop whose main purpose was to exchange information on current topics in complex analysis, differential geometry, mathematical physics and applications, and to group aspects of new mathematics.
In recent years, there has been tremendous progress on the interface of geometry and mathematical physics. This book reflects the expanded articles of several lectures in these areas delivered at the University of Adelaide, with an audience of primarily graduate students. The aim of this volume is to provide surveys of recent progress without assuming too much prerequisite knowledge and with a comprehensive bibliography, so that researchers and graduate students in geometry and mathematical physics will benefit. The contributors cover a number of areas in mathematical physics. Chapter 1 offers a self-contained derivation of the partition function of Chern-Simons gauge theory in the semiclassical approximation. Chapter 2 considers the algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory, including their relation to the braid group, quantum groups and infinite dimensional Lie algebras. Chapter 3 surveys the application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems. Chapter 4 examines the variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds. Chapter 5 is a review of monopoles in non-Abelian gauge theories and the various approaches to understanding them. Chapter 6 covers much of the exciting recent developments in quantum cohomology, including relative Gromov-Witten invariant, birational geometry, naturality and mirror symmetry. Chapter 7 explains the physics origin of the Seiberg-Witten equations in four-manifold theory and a number of important concepts in quantum field theory, such asvacuum, mass gap, (super)symmetry, anomalies and duality. Contributors: D.H. Adam, P. Bouwknegt, A.L. Carey, A. Harris, E. Langmann, M.K. Murray, Y. Ruan, S. Wu D. H. Adams: Semiclassical Approximation in Chern-Simons Gauge Theory P. Bouwknegt: The Knizhnik-Zamolodchikov Equations A. L. Carey and E. Langmann: Loop Groups and Quantum Fields A. Harris: Some Applications of Variational Calculus in Hermitian Geometry M. K. Murray: Monopoles Y. Ruan: On Gromov-Witten Invariants and Quantum Cohomology S. Wu The Geometry and Physics of the Seiberg-Witten Equations
This is the second edition of this best selling problem book for students, now containing over 400 completely solved exercises on differentiable manifolds, Lie theory, fibre bundles and Riemannian manifolds. The exercises go from elementary computations to rather sophisticated tools. Many of the definitions and theorems used throughout are explained in the first section of each chapter where they appear. A 56-page collection of formulae is included which can be useful as an aide-memoire, even for teachers and researchers on those topics. In this 2nd edition: * 76 new problems * a section devoted to a generalization of Gauss' Lemma * a short novel section dealing with some properties of the energy of Hopf vector fields * an expanded collection of formulae and tables * an extended bibliography Audience This book will be useful to advanced undergraduate and graduate students of mathematics, theoretical physics and some branches of engineering with a rudimentary knowledge of linear and multilinear algebra.
"La narraci6n literaria es la evocaci6n de las nostalgias. " ("Literary narration is the evocation of nostalgia. ") G. G. Marquez, interview in Puerta del Sol, VII, 4, 1996. A Personal Prehistory In 1972 I started cooperating with members of the Biodynamics Research Unit at the Mayo Clinic in Rochester, Minnesota, which was under the direction of Earl H. Wood. At that time, their ambitious (and eventually realized) dream was to build the Dynamic Spatial Reconstructor (DSR), a device capable of collecting data regarding the attenuation of X-rays through the human body fast enough for stop-action imaging the full extent of the beating heart inside the thorax. Such a device can be applied to study the dynamic processes of cardiopulmonary physiology, in a manner similar to the application of an ordinary cr (computerized tomography) scanner to observing stationary anatomy. The standard method of displaying the information produced by a cr scanner consists of showing two-dimensional images, corresponding to maps of the X-ray attenuation coefficient in slices through the body. (Since different tissue types attenuate X-rays differently, such maps provide a good visualization of what is in the body in those slices; bone - which attenuates X-rays a lot - appears white, air appears black, tumors typically appear less dark than the surrounding healthy tissue, etc. ) However, it seemed to me that this display mode would not be appropriate for the DSR.
The book constructs explicitly the fundamental solution of the sub-Laplacian operator for a family of model domains in Cn+1. This type of domain is a good point-wise model for a Cauchy-Rieman (CR) manifold with diagonalizable Levi form. Qualitative results for such operators have been studied extensively, but exact formulas are difficult to derive. Exact formulas are closely related to the underlying geometry and lead to equations of classical types such as hypergeometric equations and Whittaker's equations.
The aim of this book is to describe the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.
This book is by far the most comprehensive treatment of point and space groups, and their meaning and applications. Its completeness makes it especially useful as a text, since it gives the instructor the flexibility to best fit the class and goals. The instructor, not the author, decides what is in the course. And it is the prime book for reference, as material is much more likely to be found in it than in any other book; it also provides detailed guides to other sources.Much of what is taught is folklore, things everyone knows are true, but (almost?) no one knows why, or has seen proofs, justifications, rationales or explanations. (Why are there 14 Bravais lattices, and why these? Are the reasons geometrical, conventional or both? What determines the Wigner-Seitz cells? How do they affect the number of Bravais lattices? Why are symmetry groups relevant to molecules whose vibrations make them unsymmetrical? And so on). Here these analyses are given, interrelated, and in-depth. The understanding so obtained gives a strong foundation for application and extension. Assumptions and restrictions are not merely made explicit, but also emphasized.In order to provide so much information, details and examples, and ways of helping readers learn and understand, the book contains many topics found nowhere else, or only in obscure articles from the distant past. The treatment is (often completely) different from those elsewhere. At least in the explanations, and usually in many other ways, the book is completely new and fresh. It is designed to inform, educate and make the reader think. It strongly emphasizes understanding.The book can be used at many levels, by many different classes of readers - from those who merely want brief explanations (perhaps just of terminology), who just want to skim, to those who wish the most thorough understanding. remove remove
This book provides an upto date information on metric, connection and curva ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form."
This edition of the invaluable text Modern Differential Geometry for Physicists contains an additional chapter that introduces some of the basic ideas of general topology needed in differential geometry. A number of small corrections and additions have also been made.These lecture notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by first-year theoretical physics PhD students, or by students attending the one-year MSc course "Quantum Fields and Fundamental Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen bearing in mind the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields, nonlinear sigma models and other types of nonlinear field systems that feature in modern quantum field theory.The volume is divided into four parts: (i) introduction to general topology; (ii) introductory coordinate-free differential geometry; (iii) geometrical aspects of the theory of Lie groups and Lie group actions on manifolds; (iv) introduction to the theory of fibre bundles. In the introduction to differential geometry the author lays considerable stress on the basic ideas of "tangent space structure", which he develops from several different points of view - some geometrical, others more algebraic. This is done with awareness of the difficulty which physics graduate students often experience when being exposed for the first time to the rather abstract ideas of differential geometry.
Symplectic geometry is the geometry underlying Hamiltonian dynamics, and symplectic mappings arise as time-1-maps of Hamiltonian flows. The spectacular rigidity phenomena for symplectic mappings discovered in the last two decades show that certain things cannot be done by a symplectic mapping. For instance, Gromov's famous "non-squeezing'' theorem states that one cannot map a ball into a thinner cylinder by a symplectic embedding. The aim of this book is to show that certain other things can be done by symplectic mappings. This is achieved by various elementary and explicit symplectic embedding constructions, such as "folding," "wrapping'', and "lifting''. These constructions are carried out in detail and are used to solve some specific symplectic embedding problems. The exposition is self-contained and addressed to students and researchers interested in geometry or dynamics.
This book represents a collection of invited papers by outstanding mathematicians in algebra, algebraic geometry, and number theory dedicated to Vladimir Drinfeld. Original research articles reflect the range of Drinfeld's work, and his profound contributions to the Langlands program, quantum groups, and mathematical physics are paid particular attention. These ten original articles by prominent mathematicians, dedicated to Drinfeld on the occasion of his 50th birthday, broadly reflect the range of Drinfeld's own interests in algebra, algebraic geometry, and number theory.
This classic work has been fundamentally revised to take account of
recent developments in general topology. The first three chapters
remain unchanged except for numerous minor corrections and
additional exercises, but chapters IV-VII and the new chapter VIII
cover the rapid changes that have occurred since 1968 when the
first edition appeared.
This research-level book presents up-to-date information concerning
recent developments in convex functions and partial orderings and
some applications in mathematics, statistics, and reliability
theory. The book will serve researchers in mathematical and
statistical theory and theoretical and applied reliabilists.
This volume contains the proceedings of the CRM Workshops on Probabilistic Methods in Spectral Geometry and PDE, held from August 22-26, 2016 and Probabilistic Methods in Topology, held from November 14-18, 2016 at the Centre de Recherches Mathematiques, Universite de Montreal, Montreal, Quebec, Canada. Probabilistic methods have played an increasingly important role in many areas of mathematics, from the study of random groups and random simplicial complexes in topology, to the theory of random Schrodinger operators in mathematical physics. The workshop on Probabilistic Methods in Spectral Geometry and PDE brought together some of the leading researchers in quantum chaos, semi-classical theory, ergodic theory and dynamical systems, partial differential equations, probability, random matrix theory, mathematical physics, conformal field theory, and random graph theory. Its emphasis was on the use of ideas and methods from probability in different areas, such as quantum chaos (study of spectra and eigenstates of chaotic systems at high energy); geometry of random metrics and related problems in quantum gravity; solutions of partial differential equations with random initial conditions. The workshop Probabilistic Methods in Topology brought together researchers working on random simplicial complexes and geometry of spaces of triangulations (with connections to manifold learning); topological statistics, and geometric probability; theory of random groups and their properties; random knots; and other problems. This volume covers recent developments in several active research areas at the interface of Probability, Semiclassical Analysis, Mathematical Physics, Theory of Automorphic Forms and Graph Theory.
This second edition, divided into fourteen chapters, presents a comprehensive treatment of contact and symplectic manifolds from the Riemannian point of view. The monograph examines the basic ideas in detail and provides many illustrative examples for the reader. "Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition" provides new material in most chapters, but a particular emphasis remains on contact manifolds. Researchers, mathematicians, and graduate students in contact and symplectic manifold theory and in Riemannian geometry will benefit from this work. A basic course in Riemannian geometry is a prerequisite.
The 12 lectures presented in Representation Theories and Algebraic Geometry focus on the very rich and powerful interplay between algebraic geometry and the representation theories of various modern mathematical structures, such as reductive groups, quantum groups, Hecke algebras, restricted Lie algebras, and their companions. This interplay has been extensively exploited during recent years, resulting in great progress in these representation theories. Conversely, a great stimulus has been given to the development of such geometric theories as D-modules, perverse sheafs and equivariant intersection cohomology. The range of topics covered is wide, from equivariant Chow groups, decomposition classes and Schubert varieties, multiplicity free actions, convolution algebras, standard monomial theory, and canonical bases, to annihilators of quantum Verma modules, modular representation theory of Lie algebras and combinatorics of representation categories of Harish-Chandra modules.
This book is a monograph on unitals embedded in ?nite projective planes. Unitals are an interesting structure found in square order projective planes, and numerous research articles constructing and discussing these structures have appeared in print. More importantly, there still are many open pr- lems, and this remains a fruitful area for Ph.D. dissertations. Unitals play an important role in ?nite geometry as well as in related areas of mathematics. For example, unitals play a parallel role to Baer s- planes when considering extreme values for the size of a blocking set in a square order projective plane (see Section 2.3). Moreover, unitals meet the upper bound for the number of absolute points of any polarity in a square order projective plane (see Section 1.5). From an applications point of view, the linear codes arising from unitals have excellent technical properties (see 2 Section 6.4). The automorphism group of the classical unitalH =H(2, q ) is 2-transitive on the points ofH, and so unitals are of interest in group theory. In the ?eld of algebraic geometry over ?nite ?elds, H is a maximal curve that contains the largest number of F -rational points with respect to its genus, 2 q as established by the Hasse-Weil boun |
![]() ![]() You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R578
Discovery Miles 5 780
|