![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
This book consists of both expository and research articles solicited from speakers at the conference entitled "Arithmetic and Ideal Theory of Rings and Semigroups," held September 22-26, 2014 at the University of Graz, Graz, Austria. It reflects recent trends in multiplicative ideal theory and factorization theory, and brings together for the first time in one volume both commutative and non-commutative perspectives on these areas, which have their roots in number theory, commutative algebra, and algebraic geometry. Topics discussed include topological aspects in ring theory, Prufer domains of integer-valued polynomials and their monadic submonoids, and semigroup algebras. It will be of interest to practitioners of mathematics and computer science, and researchers in multiplicative ideal theory, factorization theory, number theory, and algebraic geometry.
The aim of this monograph is to present a self-contained introduction to some geometric and analytic aspects of the Yamabe problem. The book also describes a wide range of methods and techniques that can be successfully applied to nonlinear differential equations in particularly challenging situations. Such situations occur where the lack of compactness, symmetry and homogeneity prevents the use of more standard tools typically used in compact situations or for the Euclidean setting. The work is written in an easy style that makes it accessible even to non-specialists. After a self-contained treatment of the geometric tools used in the book, readers are introduced to the main subject by means of a concise but clear study of some aspects of the Yamabe problem on compact manifolds. This study provides the motivation and geometrical feeling for the subsequent part of the work. In the main body of the book, it is shown how the geometry and the analysis of nonlinear partial differential equations blend together to give up-to-date results on existence, nonexistence, uniqueness and a priori estimates for solutions of general Yamabe-type equations and inequalities on complete, non-compact Riemannian manifolds.
The book demonstrates the development of integral geometry on domains of homogeneous spaces since 1990. It covers a wide range of topics, including analysis on multidimensional Euclidean domains and Riemannian symmetric spaces of arbitrary ranks as well as recent work on phase space and the Heisenberg group. The book includes many significant recent results, some of them hitherto unpublished, among which can be pointed out uniqueness theorems for various classes of functions, far-reaching generalizations of the two-radii problem, the modern versions of the Pompeiu problem, and explicit reconstruction formulae in problems of integral geometry. These results are intriguing and useful in various fields of contemporary mathematics. The proofs given are "minimal" in the sense that they involve only those concepts and facts which are indispensable for the essence of the subject. Each chapter provides a historical perspective on the results presented and includes many interesting open problems. Readers will find this book relevant to harmonic analysis on homogeneous spaces, invariant spaces theory, integral transforms on symmetric spaces and the Heisenberg group, integral equations, special functions, and transmutation operators theory.
later versions. In addition, the CD-ROM contains a complete solutions manual that includes detailed solutions to all the problems in the book. If the reader does not wish to consult these solutions, then a brief list of answers is provided in printed form at the end of the book. Iwouldliketothankmyfamilymembersfortheirhelpandcontinuedsupportwi- out which this book would not have been possible. I would also like to acknowledge the help of the editior at Springer-Verlag (Dr. Thomas Ditzinger) for his assistance in bringing this book out in its present form. Finally, I would like to thank my brother, Nicola, for preparing most of the line drawings in both editions. In this edition, I am providing two email addresses for my readers to contact me (pkattan@tedata. net. jo and pkattan@lsu. edu). The old email address that appeared in the ?rst edition was cancelled in 2004. December 2006 Peter I. Kattan PrefacetotheFirstEdition 3 This is a book for people who love ?nite elements and MATLAB . We will use the popular computer package MATLAB as a matrix calculator for doing ?nite element analysis. Problems will be solved mainly using MATLAB to carry out the tedious and lengthy matrix calculations in addition to some manual manipulations especially when applying the boundary conditions. In particular the steps of the ?nite element method are emphasized in this book. The reader will not ?nd ready-made MATLAB programsforuseasblackboxes. Insteadstep-by-stepsolutionsof?niteelementpr- lems are examined in detail using MATLAB.
Digital geometry emerged as an independent discipline in the second half of the last century. It deals with geometric properties of digital objects and is developed with the unambiguous goal to provide rigorous theoretical foundations for devising new advanced approaches and algorithms for various problems of visual computing. Different aspects of digital geometry have been addressed in the literature. This book is the first one that explicitly focuses on the presentation of the most important digital geometry algorithms. Each chapter provides a brief survey on a major research area related to the general volume theme, description and analysis of related fundamental algorithms, as well as new original contributions by the authors. Every chapter contains a section in which interesting open problems are addressed.
This book is a systematic presentation of the solution of one of the fundamental problems of the theory of random dynamical systems - the problem of topological classification and structural stability of linear hyperbolic random dynamical systems. As a relatively new and fast expanding field of research, this theory attracts the attention of researchers from various fields of science. It unites and develops the classical deterministic theory of dynamical systems and probability theory, hence finds many applications in a very wide range of disciplines from physics to biology to engineering, finance and economics. Recent developments call for a systematic presentation of the theory. Mathematicians working in the theory of dynamical systems, stochastic dynamics as well as those interested in applications of mathematical systems with random noise will find this timely book a valuable reference and rich source of modern mathematical methods and results.
This book is an extensive monograph on Sasakian manifolds , focusing on the intricate relationship between Kahler and Sasakian geometries. The subject is introduced by discussion of several background topics, including the theory of Riemannian foliations, compact complex and Kahler orbifolds, and the existence and and obstruction theory of Kahler-Einstein metrics on complex compact orbifolds. There is then a discussion of contact and almost contact structures in the Riemannian setting, in which compact quasi-regular Sasakian manifolds emerge as algebraic objects. There is an extensive discussion of the symmetries of Sasakian manifolds, leading to a study of Sasakian structures on links of isolated hypersurface singularities. This is followed by an in-depth study of compact sasakian manifolds in dimensions three and five. The final section of the book deals with the existence of Sasaki-Einstein metrics. 3-Sasakian manifolds and the role of sasakian-Einstein geometry in String Theory are discussed separately.
This is the first graduate textbook on the algorithmic aspects of real algebraic geometry. The main ideas and techniques presented form a coherent and rich body of knowledge. Mathematicians will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. Being self-contained the book is accessible to graduate students and even, for invaluable parts of it, to undergraduate students. This second edition contains several recent results on discriminants of symmetric matrices and other relevant topics.
This book examines holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel. It opens perspectives on several active areas of research in complex, Kahler and symplectic geometry. A large number of applications are also included, such as an analytic proof of Kodaira's embedding theorem, a solution of the Grauert-Riemenschneider and Shiffman conjectures, compactification of complete Kahler manifolds of pinched negative curvature, Berezin-Toeplitz quantization, weak Lefschetz theorems, and asymptotics of the Ray-Singer analytic torsion.
This book is the first collection of lipid-membrane research conducted by leading mechanicians and experts in continuum mechanics. It brings the overall intellectual framework afforded by modern continuum mechanics to bear on a host of challenging problems in lipid membrane physics. These include unique and authoritative treatments of differential geometry, shape elasticity, surface flow and diffusion, interleaf membrane friction, phase transitions, electroelasticity and flexoelectricity, and computational modelling.
The central object of this book is the measure of geometric quantities describing N a subset of the Euclidean space (E ,), endowed with its standard scalar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with respect toG if the corresponding 0 quantity Q[g(S)] associated to g(S) equals Q(S), for all g?G . For instance, the 0 diameter ofS and the area of the convex hull ofS are quantities geometric with respect toG . But the distance from the origin O to the closest point ofS is not, 0 since it is not invariant under translations ofS. It is important to point out that the property of being geometric depends on the chosen group. For instance, ifG is the 1 N group of projective transformations of E , then the property ofS being a circle is geometric forG but not forG , while the property of being a conic or a straight 0 1 line is geometric for bothG andG . This point of view may be generalized to any 0 1 subsetS of any vector space E endowed with a groupG acting on it.
Variational Inequalities and Frictional Contact Problems contains a carefully selected collection of results on elliptic and evolutionary quasi-variational inequalities including existence, uniqueness, regularity, dual formulations, numerical approximations and error estimates ones. By using a wide range of methods and arguments, the results are presented in a constructive way, with clarity and well justified proofs. This approach makes the subjects accessible to mathematicians and applied mathematicians. Moreover, this part of the book can be used as an excellent background for the investigation of more general classes of variational inequalities. The abstract variational inequalities considered in this book cover the variational formulations of many static and quasi-static contact problems. Based on these abstract results, in the last part of the book, certain static and quasi-static frictional contact problems in elasticity are studied in an almost exhaustive way. The readers will find a systematic and unified exposition on classical, variational and dual formulations, existence, uniqueness and regularity results, finite element approximations and related optimal control problems. This part of the book is an update of the Signorini problem with nonlocal Coulomb friction, a problem little studied and with few results in the literature. Also, in the quasi-static case, a control problem governed by a bilateral contact problem is studied. Despite the theoretical nature of the presented results, the book provides a background for the numerical analysis of contact problems. The materials presented are accessible to both graduate/under graduate students and to researchers in applied mathematics, mechanics, and engineering. The obtained results have numerous applications in mechanics, engineering and geophysics. The book contains a good amount of original results which, in this unified form, cannot be found anywhere else.
This heavily class-tested book is an exposition of the theoretical foundations of hyperbolic manifolds. It is a both a textbook and a reference. A basic knowledge of algebra and topology at the first year graduate level of an American university is assumed. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. Each chapter contains exercises and a section of historical remarks. A solutions manual is available separately.
Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
From the reviews: "This volume... consists of two papers. The
first, written by V.V. Shokurov, is devoted to the theory of
Riemann surfaces and algebraic curves. It is an excellent overview
of the theory of relations between Riemann surfaces and their
models - complex algebraic curves in complex projective spaces. ...
The second paper, written by V.I. Danilov, discusses algebraic
varieties and schemes. ... I can recommend the book as a very good
introduction to the basic algebraic geometry." "European
Mathematical Society" "Newsletter, 1996"
This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
This collection of 18 research papers, dedicated to Pierre Lelong, describes the state of the art on representative problems of complex analysis and geometry. The book opens with an exposition of the achievements of Pierre Lelong on plurisubharmonic functions, closed positive currents, and their further study by other mathematicians. Moreover, a list of eleven open problems is given. All other contributions contain new results related, for example, to the following items: - Capacities, product of positive currents, L2 extension theorems, Bergman kernels and metrics, new properties of convex domains of finite type - Non-compact boundaries of Levi-flat hypersurfaces of C2, compact boundary problems as application of compactly supported measures orthogonal to polynomials, Hartogs' theorem on some open subsets of a projective manifold, Malgrange vanishing theorem with support conditions - Embeddings for 3-dimensional CR-manifolds, geometrization of hypoellipticity, stationary complex curves and complete integrability - Regular polynomial mappings of Ck in complex dynamics, a direct proof of the density of repulsive cycles in the Julia set. The book is aimed at researchers and advanced graduate students in complex and real analysis, algebraic geometry and number theory.
Mathematical algorithms are a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. This book provides a bridge between algebraic geometry and geometric modelling algorithms, formulated within a computer science framework. Apart from the algebraic geometry topics covered, the entire book is based on the unifying concept of using algebraic techniques - properly specialized to solve geometric problems - to seriously improve accuracy, robustness and efficiency of CAD-systems. It provides new approaches as well as industrial applications to deform surfaces when animating virtual characters, to automatically compare images of handwritten signatures and to improve control of NC machines. This book further introduces a noteworthy representation based on 2D contours, which is essential to model the metal sheet in industrial processes. It additionally reviews applications of numerical algebraic geometry to differential equations systems with multiple solutions and bifurcations. Future Vision and Trends on Shapes, Geometry and Algebra is aimed specialists in the area of mathematics and computer science on the one hand and on the other hand at those who want to become familiar with the practical application of algebraic geometry and geometric modelling such as students, researchers and doctorates.
Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.
Meyer's Geometry and Its Applications, Second Edition, combines
traditional geometry with current ideas to present a modern
approach that is grounded in real-world applications. It balances
the deductive approach with discovery learning, and introduces
axiomatic, Euclidean geometry, non-Euclidean geometry, and
transformational geometry. The text integrates applications and
examples throughout and includes historical notes in many chapters.
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers and advanced students.
This book provides a quick access to computational tools for algebraic geometry, the mathematical discipline which handles solution sets of polynomial equations. Originating from a number of intense one week schools taught by the authors, the text is designed so as to provide a step by step introduction which enables the reader to get started with his own computational experiments right away. The authors present the basic concepts and ideas in a compact way.
Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifolds, are much more abundant but have a more modest history, having become of increasing interest only over the past 40 years or so. The first book on this topic, this book ranges from criteria for metrisability, dynamics on non-metrisable manifolds, Nyikos's Bagpipe Theorem and whether perfectly normal manifolds are metrisable to structures on manifolds, especially the abundance of exotic differential structures and the dearth of foliations on the long plane. A rigid foliation of the Euclidean plane is described. This book is intended for graduate students and mathematicians who are curious about manifolds beyond the metrisability wall, and especially the use of Set Theory as a tool.
This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB (R) including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines. |
You may like...
|