|
Books > Science & Mathematics > Mathematics > Geometry
The term "stereotype space" was introduced in 1995 and denotes a
category of locally convex spaces with surprisingly elegant
properties. Its study gives an unexpected point of view on
functional analysis that brings this fi eld closer to other main
branches of mathematics, namely, to algebra and geometry. This
volume contains the foundations of the theory of stereotype spaces,
with accurate definitions, formulations, proofs, and numerous
examples illustrating the interaction of this discipline with the
category theory, the theory of Hopf algebras, and the four big
geometric disciplines: topology, differential geometry, complex
geometry, and algebraic geometry.
This contributed volume is a follow-up to the 2013 volume of the
same title, published in honor of noted Algebraist David Eisenbud's
65th birthday. It brings together the highest quality expository
papers written by leaders and talented junior mathematicians in the
field of Commutative Algebra. Contributions cover a very wide range
of topics, including core areas in Commutative Algebra and also
relations to Algebraic Geometry, Category Theory, Combinatorics,
Computational Algebra, Homological Algebra, Hyperplane
Arrangements, and Non-commutative Algebra. The book aims to
showcase the area and aid junior mathematicians and researchers who
are new to the field in broadening their background and gaining a
deeper understanding of the current research in this area. Exciting
developments are surveyed and many open problems are discussed with
the aspiration to inspire the readers and foster further research.
This monograph provides a coherent development of operads, infinity
operads, and monoidal categories, equipped with equivariant
structures encoded by an action operad. A group operad is a planar
operad with an action operad equivariant structure. In the first
three parts of this monograph, we establish a foundation for group
operads and for their higher coherent analogues called infinity
group operads. Examples include planar, symmetric, braided, ribbon,
and cactus operads, and their infinity analogues. For example, with
the tools developed here, we observe that the coherent ribbon nerve
of the universal cover of the framed little 2-disc operad is an
infinity ribbon operad.In Part 4 we define general monoidal
categories equipped with an action operad equivariant structure and
provide a unifying treatment of coherence and strictification for
them. Examples of such monoidal categories include symmetric,
braided, ribbon, and coboundary monoidal categories, which
naturally arise in the representation theory of quantum groups and
of coboundary Hopf algebras and in the theory of crystals of finite
dimensional complex reductive Lie algebras.
The book presents a comprehensive overview of various aspects of
three-dimensional geometry that can be experienced on a daily
basis. By covering the wide range of topics - from the psychology
of spatial perception to the principles of 3D modelling and
printing, from the invention of perspective by Renaissance artists
to the art of Origami, from polyhedral shapes to the theory of
knots, from patterns in space to the problem of optimal packing,
and from the problems of cartography to the geometry of solar and
lunar eclipses - this book provides deep insight into phenomena
related to the geometry of space and exposes incredible nuances
that can enrich our lives.The book is aimed at the general
readership and provides more than 420 color illustrations that
support the explanations and replace formal mathematical arguments
with clear graphical representations.
The book presents a comprehensive overview of various aspects of
three-dimensional geometry that can be experienced on a daily
basis. By covering the wide range of topics - from the psychology
of spatial perception to the principles of 3D modelling and
printing, from the invention of perspective by Renaissance artists
to the art of Origami, from polyhedral shapes to the theory of
knots, from patterns in space to the problem of optimal packing,
and from the problems of cartography to the geometry of solar and
lunar eclipses - this book provides deep insight into phenomena
related to the geometry of space and exposes incredible nuances
that can enrich our lives.The book is aimed at the general
readership and provides more than 420 color illustrations that
support the explanations and replace formal mathematical arguments
with clear graphical representations.
This book is devoted to the structure of the absolute Galois groups
of certain algebraic extensions of the field of rational numbers.
Its main result, a theorem proved by the authors and Florian Pop in
2012, describes the absolute Galois group of distinguished
semi-local algebraic (and other) extensions of the rational numbers
as free products of the free profinite group on countably many
generators and local Galois groups. This is an instance of a
positive answer to the generalized inverse problem of Galois
theory. Adopting both an arithmetic and probabilistic approach, the
book carefully sets out the preliminary material needed to prove
the main theorem and its supporting results. In addition, it
includes a description of Melnikov's construction of free products
of profinite groups and, for the first time in book form, an
account of a generalization of the theory of free products of
profinite groups and their subgroups. The book will be of interest
to researchers in field arithmetic, Galois theory and profinite
groups.
Hermitian symmetric spaces are an important class of manifolds that
can be studied with methods from Kahler geometry and Lie theory.
This work gives an introduction to Hermitian symmetric spaces and
their submanifolds, and presents classifi cation results for real
hypersurfaces in these spaces, focusing on results obtained by
Jurgen Berndt and Young Jin Suh in the last 20 years.
This book summarizes recent inventions, provides guidelines and
recommendations, and demonstrates many practical applications of
homomorphic encryption. This collection of papers represents the
combined wisdom of the community of leading experts on Homomorphic
Encryption. In the past 3 years, a global community consisting of
researchers in academia, industry, and government, has been working
closely to standardize homomorphic encryption. This is the first
publication of whitepapers created by these experts that
comprehensively describes the scientific inventions, presents a
concrete security analysis, and broadly discusses applicable use
scenarios and markets. This book also features a collection of
privacy-preserving machine learning applications powered by
homomorphic encryption designed by groups of top graduate students
worldwide at the Private AI Bootcamp hosted by Microsoft Research.
The volume aims to connect non-expert readers with this important
new cryptographic technology in an accessible and actionable way.
Readers who have heard good things about homomorphic encryption but
are not familiar with the details will find this book full of
inspiration. Readers who have preconceived biases based on
out-of-date knowledge will see the recent progress made by
industrial and academic pioneers on optimizing and standardizing
this technology. A clear picture of how homomorphic encryption
works, how to use it to solve real-world problems, and how to
efficiently strengthen privacy protection, will naturally become
clear.
MESH ist ein mathematisches Video ber vielfl chige Netzwerke und
ihre Rolle in der Geometrie, der Numerik und der Computergraphik.
Der unter Anwendung der neuesten Technologie vollst ndig
computergenierte Film spannt einen Bogen von der antiken
griechischen Mathematik zum Gebiet der heutigen geometrischen
Modellierung. MESH hat zahlreiche wissenschaftliche Preise weltweit
gewonnen. Die Autoren sind Konrad Polthier, ein Professor der
Mathematik, und Beau Janzen, ein professioneller Filmdirektor.
Der Film ist ein ausgezeichnetes Lehrmittel f r Kurse in
Geometrie, Visualisierung, wissenschaftlichem Rechnen und
geometrischer Modellierung an Universit ten, Zentren f r
wissenschaftliches Rechnen, kann jedoch auch an Schulen genutzt
werden.
This monograph contains papers that were delivered at the special
session on Geometric Potential Analysis, that was part of the
Mathematical Congress of the Americas 2021, virtually held in
Buenos Aires. The papers, that were contributed by renowned
specialists worldwide, cover important aspects of current research
in geometrical potential analysis and its applications to partial
differential equations and mathematical physics.
"Presents a summary of selected mathematics topics from
college/university level mathematics courses. Fundamental
principles are reviewed and presented by way of examples, figures,
tables and diagrams. It condenses and presents under one cover
basic concepts from several different applied mathematics
topics"--P. [4] of cover.
This book is an introduction to fiber bundles and fibrations. But
the ultimate goal is to make the reader feel comfortable with basic
ideas in homotopy theory. The author found that the classification
of principal fiber bundles is an ideal motivation for this purpose.
The notion of homotopy appears naturally in the classification.
Basic tools in homotopy theory such as homotopy groups and their
long exact sequence need to be introduced. Furthermore, the notion
of fibrations, which is one of three important classes of maps in
homotopy theory, can be obtained by extracting the most essential
properties of fiber bundles. The book begins with elementary
examples and then gradually introduces abstract definitions when
necessary. The reader is assumed to be familiar with point-set
topology, but it is the only requirement for this book.
Noncommutative geometry studies an interplay between spatial forms
and algebras with non-commutative multiplication. This book covers
the key concepts of noncommutative geometry and its applications in
topology, algebraic geometry, and number theory. Our presentation
is accessible to the graduate students as well as nonexperts in the
field. The second edition includes two new chapters on arithmetic
topology and quantum arithmetic.
This book pedagogically describes recent developments in gauge
theory, in particular four-dimensional N = 2 supersymmetric gauge
theory, in relation to various fields in mathematics, including
algebraic geometry, geometric representation theory, vertex
operator algebras. The key concept is the instanton, which is a
solution to the anti-self-dual Yang-Mills equation in four
dimensions. In the first part of the book, starting with the
systematic description of the instanton, how to integrate out the
instanton moduli space is explained together with the equivariant
localization formula. It is then illustrated that this formalism is
generalized to various situations, including quiver and fractional
quiver gauge theory, supergroup gauge theory. The second part of
the book is devoted to the algebraic geometric description of
supersymmetric gauge theory, known as the Seiberg-Witten theory,
together with string/M-theory point of view. Based on its relation
to integrable systems, how to quantize such a geometric structure
via the -deformation of gauge theory is addressed. The third part
of the book focuses on the quantum algebraic structure of
supersymmetric gauge theory. After introducing the free field
realization of gauge theory, the underlying infinite dimensional
algebraic structure is discussed with emphasis on the connection
with representation theory of quiver, which leads to the notion of
quiver W-algebra. It is then clarified that such a gauge theory
construction of the algebra naturally gives rise to further
affinization and elliptic deformation of W-algebra.
The main reason I write this book was just to fullfil my long time
dream to be able to tutor students. Most students do not bring
their text books at home from school. This makes it difficult to
help them. This book may help such students as this can be used as
a reference in understanding Algebra and Geometry.
This monograph explores classical electrodynamics from a
geometrical perspective with a clear visual presentation
throughout. Featuring over 200 figures, readers will delve into the
definitions, properties, and uses of directed quantities in
classical field theory. With an emphasis on both mathematical and
electrodynamic concepts, the author's illustrative approach will
help readers understand the critical role directed quantities play
in physics and mathematics. Chapters are organized so that they
gradually scale in complexity, and carefully guide readers through
important topics. The first three chapters introduce directed
quantities in three dimensions with and without the metric, as well
as the development of the algebra and analysis of directed
quantities. Chapters four through seven then focus on
electrodynamics without the metric, such as the premetric case,
waves, and fully covariant four-dimensional electrodynamics.
Complementing the book's careful structure, exercises are included
throughout for readers seeking further opportunities to practice
the material. Directed Quantities in Electrodynamics will appeal to
students, lecturers, and researchers of electromagnetism. It is
particularly suitable as a supplement to standard textbooks on
electrodynamics.
|
You may like...
Trigonometry
Expologic LLC
Fold-out book or chart
R634
Discovery Miles 6 340
|