![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
Computer vision and image analysis require interdisciplinary collaboration between mathematics and engineering. This book addresses the area of high-accuracy measurements of length, curvature, motion parameters and other geometrical quantities from acquired image data. It is a common problem that these measurements are incomplete or noisy, such that considerable efforts are necessary to regularise the data, to fill in missing information, and to judge the accuracy and reliability of these results. This monograph brings together contributions from researchers in computer vision, engineering and mathematics who are working in this area. The book can be read both by specialists and graduate students in computer science, electrical engineering or mathematics who take an interest in data evaluations by approximation or interpolation, in particular data obtained in an image analysis context.
The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology at the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).
Arakelov introduced a component at infinity in arithmetic considerations, thus giving rise to global theorems similar to those of the theory of surfaces, but in an arithmetic context over the ring of integers of a number field. The book gives an introduction to this theory, including the analogues of the Hodge Index Theorem, the Arakelov adjunction formula, and the Faltings Riemann-Roch theorem. The book is intended for second year graduate students and researchers in the field who want a systematic introduction to the subject. The residue theorem, which forms the basis for the adjunction formula, is proved by a direct method due to Kunz and Waldi. The Faltings Riemann-Roch theorem is proved without assumptions of semistability. An effort has been made to include all necessary details, and as complete references as possible, especially to needed facts of analysis for Green's functions and the Faltings metrics.
Two contributions on closely related subjects: the theory of linear algebraic groups and invariant theory, by well-known experts in the fields. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics and theoretical physics.
The study of qualitative aspects of PDE's has always attracted much attention from the early beginnings. More recently, once basic issues about PDE's, such as existence, uniqueness and stability of solutions, have been understood quite well, research on topological and/or geometric properties of their solutions has become more intense. The study of these issues is attracting the interest of an increasing number of researchers and is now a broad and well-established research area, with contributions that often come from experts from disparate areas of mathematics, such as differential and convex geometry, functional analysis, calculus of variations, mathematical physics, to name a few. This volume collects a selection of original results and informative surveys by a group of international specialists in the field, analyzes new trends and techniques and aims at promoting scientific collaboration and stimulating future developments and perspectives in this very active area of research.
The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.
The aim of this book is to make accessible the two important but rare works of Brook Taylor and to describe his role in the history of linear perspective. Taylor's works, Linear Perspective and New Principles on Linear Perspective, are among the most important sources in the history of the theory of perspective. This text focuses on two aspects of this history. The first is the development, starting in the beginning of the 17th century, of a mathematical theory of perspective where gifted mathematicians used their creativity to solve basic problems of perspective and simultaneously were inspired to consider more general problems in the projective geometry. Taylor was one of the key figures in this development. The second aspect concerns the problem of transmitting the knowledge gained by mathematicians to the practitioners. Although Taylor's books were mathematical rather than challenging, he was the first mathematician to succeed in making the practitioners interested in teaching the theoretical foundation of perspective. He became so important in the development that he was named "the father of modern perspective" in England. The English school of Taylor followers contained among others the painter John Kirby and Joseph Highmore and the scientist Joseph Priestley. After its translation to Italian and French in the 1750s, Taylor's work became popular on the continent.
This book is based on the author's experience with calculations involving polynomial splines. It presents those parts of the theory which are especially useful in calculations and stresses the representation of splines as linear combinations of B-splines. After two chapters summarizing polynomial approximation, a rigorous discussion of elementary spline theory is given involving linear, cubic and parabolic splines. The computational handling of piecewise polynomial functions (of one variable) of arbitrary order is the subject of chapters VII and VIII, while chapters IX, X, and XI are devoted to B-splines. The distances from splines with fixed and with variable knots is discussed in chapter XII. The remaining five chapters concern specific approximation methods, interpolation, smoothing and least-squares approximation, the solution of an ordinary differential equation by collocation, curve fitting, and surface fitting. The present text version differs from the original in several respects. The book is now typeset (in plain TeX), the Fortran programs now make use of Fortran 77 features. The figures have been redrawn with the aid of Matlab, various errors have been corrected, and many more formal statements have been provided with proofs. Further, all formal statements and equations have been numbered by the same numbering system, to make it easier to find any particular item. A major change has occured in Chapters IX-XI where the B-spline theory is now developed directly from the recurrence relations without recourse to divided differences. This has brought in knot insertion as a powerful tool for providing simple proofs concerning the shape-preserving properties of the B-spline series.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
In the 60's, the work of Anderson, Chernavski, Kirby and Edwards showed that the group of homeomorphisms of a smooth manifold which are isotopic to the identity is a simple group. This led Smale to conjecture that the group Diff'" (M)o of cr diffeomorphisms, r ~ 1, of a smooth manifold M, with compact supports, and isotopic to the identity through compactly supported isotopies, is a simple group as well. In this monograph, we give a fairly detailed proof that DifF(M)o is a simple group. This theorem was proved by Herman in the case M is the torus rn in 1971, as a consequence of the Nash-Moser-Sergeraert implicit function theorem. Thurston showed in 1974 how Herman's result on rn implies the general theorem for any smooth manifold M. The key idea was to vision an isotopy in Diff'"(M) as a foliation on M x [0, 1]. In fact he discovered a deep connection between the local homology of the group of diffeomorphisms and the homology of the Haefliger classifying space for foliations. Thurston's paper [180] contains just a brief sketch of the proof. The details have been worked out by Mather [120], [124], [125], and the author [12]. This circle of ideas that we call the "Thurston tricks" is discussed in chapter 2. It explains how in certain groups of diffeomorphisms, perfectness leads to simplicity. In connection with these ideas, we discuss Epstein's theory [52], which we apply to contact diffeomorphisms in chapter 6.
Previous publications on the generalization of the Thomae formulae to "Zn" curves have emphasized the theory's implications in mathematical physics and depended heavily on applied mathematical techniques. This book redevelops these previous results demonstrating how they can be derived directly from the basic properties of theta functions as functions on compact Riemann surfaces. "Generalizations of Thomae's Formulafor "Zn" Curves" includes several refocused proofs developed in a generalized context that is more accessible to researchers in related mathematical fields such as algebraic geometry, complex analysis, and number theory. This book is intended for mathematicians with an interest in complex analysis, algebraic geometry or number theory as well as physicists studying conformal field theory."
In this book we study sprays and Finsler metrics. Roughly speaking, a spray on a manifold consists of compatible systems of second-order ordinary differential equations. A Finsler metric on a manifold is a family of norms in tangent spaces, which vary smoothly with the base point. Every Finsler metric determines a spray by its systems of geodesic equations. Thus, Finsler spaces can be viewed as special spray spaces. On the other hand, every Finsler metric defines a distance function by the length of minimial curves. Thus Finsler spaces can be viewed as regular metric spaces. Riemannian spaces are special regular metric spaces. In 1854, B. Riemann introduced the Riemann curvature for Riemannian spaces in his ground-breaking Habilitationsvortrag. Thereafter the geometry of these special regular metric spaces is named after him. Riemann also mentioned general regular metric spaces, but he thought that there were nothing new in the general case. In fact, it is technically much more difficult to deal with general regular metric spaces. For more than half century, there had been no essential progress in this direction until P. Finsler did his pioneering work in 1918. Finsler studied the variational problems of curves and surfaces in general regular metric spaces. Some difficult problems were solved by him. Since then, such regular metric spaces are called Finsler spaces. Finsler, however, did not go any further to introduce curvatures for regular metric spaces. He switched his research direction to set theory shortly after his graduation.
This is a two-volume collection presenting the selected works of Herbert Busemann, one of the leading geometers of the twentieth century and one of the main founders of metric geometry, convexity theory and convexity in metric spaces. Busemann also did substantial work (probably the most important) on Hilbert's Problem IV. These collected works include Busemann's most important published articles on these topics. Volume I of the collection features Busemann's papers on the foundations of geodesic spaces and on the metric geometry of Finsler spaces. Volume II includes Busemann's papers on convexity and integral geometry, on Hilbert's Problem IV, and other papers on miscellaneous subjects. Each volume offers biographical documents and introductory essays on Busemann's work, documents from his correspondence and introductory essays written by leading specialists on Busemann's work. They are a valuable resource for researchers in synthetic and metric geometry, convexity theory and the foundations of geometry.
Key topics in the theory of real analytic functions are covered in this text,and are rather difficult to pry out of the mathematics literature.; This expanded and updated 2nd ed. will be published out of Boston in Birkhauser Adavaned Texts series.; Many historical remarks, examples, references and an excellent index should encourage the reader study this valuable and exciting theory.; Superior advanced textbook or monograph for a graduate course or seminars on real analytic functions.; New to the second edition a revised and comprehensive treatment of the Faa de Bruno formula, topologies on the space of real analytic functions,; alternative characterizations of real analytic functions, surjectivity of partial differential operators, And the Weierstrass preparation theorem.
Fuchsian reduction is a method for representing solutions of nonlinear PDEs near singularities. The technique has multiple applications including soliton theory, Einstein's equations and cosmology, stellar models, laser collapse, conformal geometry and combustion. Developed in the 1990s for semilinear wave equations, Fuchsian reduction research has grown in response to those problems in pure and applied mathematics where numerical computations fail. This work unfolds systematically in four parts, interweaving theory and applications. The case studies examined in Part III illustrate the impact of reduction techniques, and may serve as prototypes for future new applications. In the same spirit, most chapters include a problem section. Background results and solutions to selected problems close the volume. This book can be used as a text in graduate courses in pure or applied analysis, or as a resource for researchers working with singularities in geometry and mathematical physics.
This book gives a comprehensive account of Mori¿s Program, that is an approach to the following problem: classify all the projective varieties X in P^n over C up to isomorphism. Mori¿s Program is a fusion of the so-called Minimal Model Program and the Iitaka Program toward the biregular and/or birational classification of higher dimensional algebraic varieties. The author presents this theory in an easy and understandable way with lots of background motivation. It is the first book in this extremely important and active area of research and will become a key resource for graduate students.
Sub-Riemannian geometry (also known as Carnot geometry in France,
and non-holonomic Riemannian geometry in Russia) has been a full
research domain for fifteen years, with motivations and
ramifications in several parts of pure and applied mathematics,
namely:
This proceedings volume covers a range of research topics in algebra from the Southern Regional Algebra Conference (SRAC) that took place in March 2017. Presenting theory as well as computational methods, featured survey articles and research papers focus on ongoing research in algebraic geometry, ring theory, group theory, and associative algebras. Topics include algebraic groups, combinatorial commutative algebra, computational methods for representations of groups and algebras, group theory, Hopf-Galois theory, hypergroups, Lie superalgebras, matrix analysis, spherical and algebraic spaces, and tropical algebraic geometry. Since 1988, SRAC has been an important event for the algebra research community in the Gulf Coast Region and surrounding states, building a strong network of algebraists that fosters collaboration in research and education. This volume is suitable for graduate students and researchers interested in recent findings in computational and theoretical methods in algebra and representation theory.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can us;; Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
Karl Menger, one of the founders of dimension theory, belongs to the most original mathematicians and thinkers of the twentieth century. He was a member of the Vienna Circle and the founder of its mathematical equivalent, the Viennese Mathematical Colloquium. Both during his early years in Vienna and, after his emigration, in the United States, Karl Menger made significant contributions to a wide variety of mathematical fields, and greatly influenced some of his colleagues. The Selecta Mathematica contain Menger's major mathematical papers, based on his own selection from his extensive writings. They deal with topics as diverse as topology, geometry, analysis and algebra, as well as writings on economics, sociology, logic, philosophy and mathematical results. The two volumes are a monument to the diversity and originality of Menger's ideas.
Sir Isaac Newton's philosophi Naturalis Principia Mathematica'(the
Principia) contains a prose-style mixture of geometric and limit
reasoning that has often been viewed as logically vague.
This book offers an advanced course on "Computational Geometry for Ships". It takes into account the recent rapid progress in this field by adapting modern computational methodology to ship geometric applications. Preliminary curve and surface techniques are included to educate engineers in the use of mathematical methods to assist in CAD and other design areas. In addition, there is a comprehensive study of interpolation and approximation techniques, which is reinforced by direct application to ship curve design, ship curve fairing techniques and other related disciplines. The design, evaluation and production of ship surface geometries are further demonstrated by including current and evolving CAD modelling systems.
In April of 1996 an array of mathematicians converged on Cambridge, Massachusetts, for the Rotafest and Umbral Calculus Workshop, two con ferences celebrating Gian-Carlo Rota's 64th birthday. It seemed appropriate when feting one of the world's great combinatorialists to have the anniversary be a power of 2 rather than the more mundane 65. The over seventy-five par ticipants included Rota's doctoral students, coauthors, and other colleagues from more than a dozen countries. As a further testament to the breadth and depth of his influence, the lectures ranged over a wide variety of topics from invariant theory to algebraic topology. This volume is a collection of articles written in Rota's honor. Some of them were presented at the Rotafest and Umbral Workshop while others were written especially for this Festschrift. We will say a little about each paper and point out how they are connected with the mathematical contributions of Rota himself."
Geometrical Physics in Minkowski Spacetime is an overview and description of the geometry in spacetime, and aids in the creation and development of intuition in four-dimensional Minkowski space. The deepest understanding of relativity and spacetime is in terms of the geometrical absolutes, and this is what the book seeks to develop. The most interesting topics requiring special relativity are covered, including:SpacetimeVectors in SpacetimeElectromagnetismAsymptotic Momentum ConservationCovectors and Dyadics in SpacetimeEnergy Tensor Although the book is not meant for the complete beginner in special relativity, the mathematical prerequisites for the early chapters of the book are very few - linear algebra and elementary geometry (done using vectors and a scalar product). For the later chapters, multivariable calculus and ordinary differential equations are often needed. |
![]() ![]() You may like...
Principles of Performance and…
Lance Fiondella, Antonio Puliafito
Hardcover
R5,274
Discovery Miles 52 740
The End of Russian Philosophy…
A. Deblasio, Alyssa Deblasio
Hardcover
|