![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
These two volumes contain eighteen invited papers by distinguished mathematicians in honor of the eightieth birthday of Israel M. Gelfand, one of the most remarkable mathematicians of our time. Gelfand has played a crucial role in the development of functional analysis during the last half-century. His work and his philosophy have in fact helped shape our understanding of the term 'functional analysis'. The papers in these volumes largely concern areas in which Gelfand has a very strong interest today, including geometric quantum field theory, representation theory, combinatorial structures underlying various 'continuous' constructions, quantum groups and geometry.
The textbook Geometry, published in French by CEDICjFernand Nathan and in English by Springer-Verlag (scheduled for 1985) was very favorably re ceived. Nevertheless, many readers found the text too concise and the exercises at the end of each chapter too difficult, and regretted the absence of any hints for the solution of the exercises. This book is intended to respond, at least in part, to these needs. The length of the textbook (which will be referred to as B] throughout this book) and the volume of the material covered in it preclude any thought of publishing an expanded version, but we considered that it might prove both profitable and amusing to some of our readers to have detailed solutions to some of the exercises in the textbook. At the same time, we planned this book to be independent, at least to a certain extent, from the textbook; thus, we have provided summaries of each of its twenty chapters, condensing in a few pages and under the same titles the most important notions and results, used in the solution of the problems. The statement of the selected problems follows each summary, and they are numbered in order, with a reference to the corresponding place in B]. These references are not meant as indications for the solutions of the problems. In the body of each summary there are frequent references to B], and these can be helpful in elaborating a point which is discussed too cursorily in this book."
The geometrical methods in modem mathematical physics and the developments in Geometry and Global Analysis motivated by physical problems are being intensively worked out in contemporary mathematics. In particular, during the last decades a new branch of Global Analysis, Stochastic Differential Geometry, was formed to meet the needs of Mathematical Physics. It deals with a lot of various second order differential equations on finite and infinite-dimensional manifolds arising in Physics, and its validity is based on the deep inter-relation between modem Differential Geometry and certain parts of the Theory of Stochastic Processes, discovered not so long ago. The foundation of our topic is presented in the contemporary mathematical literature by a lot of publications devoted to certain parts of the above-mentioned themes and connected with the scope of material of this book. There exist some monographs on Stochastic Differential Equations on Manifolds (e. g. [9,36,38,87]) based on the Stratonovich approach. In [7] there is a detailed description of It6 equations on manifolds in Belopolskaya-Dalecky form. Nelson's book [94] deals with Stochastic Mechanics and mean derivatives on Riemannian Manifolds. The books and survey papers on the Lagrange approach to Hydrodynamics [2,31,73,88], etc. , give good presentations of the use of infinite-dimensional ordinary differential geometry in ideal hydrodynamics. We should also refer here to [89,102], to the previous books by the author [53,64], and to many others.
In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of 3. The student's preliminary understanding of higher dimensions is not cultivated."
These two volumes contain eighteen invited papers by distinguished mathematicians in honor of the eightieth birthday of Israel M. Gelfand, one of the most remarkable mathematicians of our time. Gelfand has played a crucial role in the development of functional analysis during the last half-century. His work and his philosophy have in fact helped shape our understanding of the term 'functional analysis'. The papers in these volumes largely concern areas in which Gelfand has a very strong interest today, including geometric quantum field theory, representation theory, combinatorial structures underlying various 'continuous' constructions, quantum groups and geometry.
C.S. Seshadri turned seventy on the 29th of February, 2002. To mark this occasion, a symposium was held in Chennai, India, where some of his colleagues gave expository talks highlighting Seshadri's contributions to mathematics. This volume includes expanded texts of these talks as well as research and expository papers on geometry and representation theory. It will serve as an excellent reference for researchers and students in these areas.
During the last few years, the field of nonlinear problems has undergone great development. This book consisting of the updated Grundlehren volume 252 by the author and of a newly written part, deals with some important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved. Each problem is explained, up-to-date results are given and proofs are presented. Thus, the reader is given access, for each specific problem, to its present status of solution as well as to the most up-to-date methods for approaching it. The main objective of the book is to explain some methods and new techniques, and to apply them. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber.
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2-3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resource for graduate students and researchers who wish to expand their knowledge of commutative algebra, algebraic geometry, combinatorics, and the intricacies of their intersection.
The present book is a translation into English of Elernenta CU'f'Varurn Linearurn-Liber Prirnus, written in Latin, by the Dutch statesman and mathematician Jan de Witt (1625-1672). Together with its sequel, Ele- rnenta CU'f'Varurn Linearurn-Liber Secundus, it constitutes the first text- book on Analytic Geometry, based on the ideas of Descartes, as laid down in his Geornetrie of 1637. The first edition of de Witt's work appeared in 1659 and this translation is its first translation into English. For more details the reader is referred to the Introduction. Apart from this translation and this introduction, the present work con- tains an extensive summary, annotations to the translation, and two ap- pendices on the role of the conics in Greek mathematics. The translation has been made from the second edition, printed by the Blaeu Company in Amsterdam in 1684. In 1997 the translator published a translation into Dutch of the same work, likewise supplied with an introduction, a summary, notes, and two appendices. This edition appeared as a publication of the Stichting Mathe- matisch Centrum Amsterdam. The present translation, however, is a direct translation of the Latin text. The rest of this work is an English version of the introduction, the summary, the notes, and the appendices, based on the Dutch original.
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa tions of motion (solitons and instantons) allow the physicist to leave the frame work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds."
In recent years, it has become increasingly clear that there are important connections relating three concepts -- groupoids, inverse semigroups, and operator algebras. There has been a great deal of progress in this area over the last two decades, and this book gives a careful, up-to-date and reasonably extensive account of the subject matter. After an introductory first chapter, the second chapter presents a self-contained account of inverse semigroups, locally compact and r-discrete groupoids, and Lie groupoids. The section on Lie groupoids in chapter 2 contains a detailed discussion of groupoids particularly important in noncommutative geometry, including the holonomy groupoids of a foliated manifold and the tangent groupoid of a manifold. The representation theories of locally compact and r-discrete groupoids are developed in the third chapter, and it is shown that the C*-algebras of r-discrete groupoids are the covariance C*-algebras for inverse semigroup actions on locally compact Hausdorff spaces. A final chapter associates a universal r-discrete groupoid with any inverse semigroup. Six subsequent appendices treat topics related to those covered in the text. The book should appeal to a wide variety of professional mathematicians and graduate students in fields such as operator algebras, analysis on groupoids, semigroup theory, and noncommutative geometry. It will also be of interest to mathematicians interested in tilings and theoretical physicists whose focus is modeling quasicrystals with tilings. An effort has been made to make the book lucid and 'user friendly"; thus it should be accessible to any reader with a basic background in measure theory and functional analysis.
This book deals with the constructive Weierstrassian approach to the theory of function spaces and various applications. The first chapter is devoted to a detailed study of quarkonial (subatomic) decompositions of functions and distributions on euclidean spaces, domains, manifolds and fractals. This approach combines the advantages of atomic and wavelet representations. It paves the way to sharp inequalities and embeddings in function spaces, spectral theory of fractal elliptic operators, and a regularity theory of some semi-linear equations. The book is self-contained, although some parts may be considered as a continuation of the author's book "Fractals and Spectra" (MMA 91). It is directed to mathematicians and (theoretical) physicists interested in the topics indicated and, in particular, how they are interrelated.
This book is based on lectures I have given to undergraduate and graduate audiences at Oxford and elsewhere over the years. My aim has been to provide an outline of both the topological theory and the uniform theory, with an emphasis on the relation between the two. Although I hope that the prospec tive specialist may find it useful as an introduction it is the non-specialist I have had more in mind in selecting the contents. Thus I have tended to avoid the ingenious examples and counterexamples which often occupy much ofthe space in books on general topology, and I have tried to keep the number of definitions down to the essential minimum. There are no particular pre requisites but I have worked on the assumption that a potential reader will already have had some experience of working with sets and functions and will also be familiar with the basic concepts of algebra and analysis. There are a number of fine books on general topology, some of which I have listed in the Select Bibliography at the end of this volume. Of course I have benefited greatly from this previous work in writing my own account. Undoubtedly the strongest influence is that of Bourbaki's Topologie Generale 2], the definitive treatment of the subject which first appeared over a genera tion ago."
* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow. * Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.
Althoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literature. This text deals with the CR submanifolds of complex manifolds, with particular emphasis on CR submanifolds of complex projective space, and it covers the topics which are necessary for learning the basic properties of these manifolds. We are aware that it is impossible to give a complete overview of these submanifolds, but we hope that these notes can serve as an introduction to their study. We present the fundamental de?nitions and results necessary for reaching the frontiers of research in this ?eld. There are many monographs dealing with some current interesting topics in di?erential geometry, but most of these are written as encyclopedias, or research monographs, gathering recent results and giving the readers ample usefulinformationaboutthetopics. Therefore, thesekindsofmonographsare attractive to specialists in di?erential geometry and related ?elds and acce- able to professional di?erential geometers. However, for graduate students who are less advanced in di?erential geometry, these texts might be hard to read without assistance from their instructors. By contrast, the general philosophy of this book is to begin with the elementary facts about complex manifolds and their submanifolds, give some details and proofs, and introduce the reader to the study of CR submanifolds of complex manifolds; especially complex projective space. It includes only a few original results with precise proofs, while the others are cited in the reference list.
Within traditional decision theory, common decision principles -- e.g. the principle to maximize utility -- generally invoke idealization; they govern ideal agents in ideal circumstances. In Realistic Decision Theory, Paul Weirch adds practicality to decision theory by formulating principles applying to nonideal agents in nonideal circumstances, such as real people coping with complex decisions. Bridging the gap between normative demands and psychological resources, Realistic Decision Theory is essential reading for theorists seeking precise normative decision principles that acknowledge the limits and difficulties of human decision-making.
This book presents problems and solutions in calculus with curvilinear coordinates. Vector analysis can be performed in different coordinate systems, an optimal system considers the symmetry of the problem in order to reduce calculatory difficulty. The book presents the material in arbitrary orthogonal coordinates, and includes the discussion of parametrization methods as well as topics such as potential theory and integral theorems. The target audience primarily comprises university teachers in engineering mathematics, but the book may also be beneficial for advanced undergraduate and graduate students alike.
This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi's career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kahler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables geometry, as well as to graduate students in mathematics.
In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So ardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe?It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a fruitful analogue of the sectional curvature. There is also a bewildering array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. This book focuses on the elementary but essential items among these results. Much thought has gone into making the account a teachable one.
The Latin "Version II," till now attributed to Adelard of Bath, is edited here for the first time. It was the most influential Euclid text in the Latin West in the 12th and 13th centuries. As the large number of manuscripts and the numerous quotations in other scientific and philosophical texts show, it was far better known than the three Euclid translations made from the Arabic in the 12th century (Adelard of Bath, version I; Hermann of Carinthia; Gerard of Cremona). Version II became the basis of later reworkings, in which the enunciations were taken over, but new proofs supplied; the most important text of this kind is the redaction made by Campanus in the late 1250s, which became the standard Latin "Euclid" in the later Middle Ages. The introduction deals with the questions of when and by whom version II was written. Since Marshall Clagett's fundamental article (1953) it has been generally accepted that version II is one of three Euclid texts attributable to Adelard of Bath. But a comparison of the text of version II with those of versions I and III yields little or no reason to assume that Adelard was the author of version II. Version II must have been written later than version I and before version III; its author was acquainted with Euclid texts of the Boethius tradition and with two of those transmitted from Arabic, version I (almost certainly by Adelard) and the version by Hermann of Carinthia.
This book gives a unified treatment of a variety of mathematical systems generating densities, ranging from one-dimensional discrete time transformations through continuous time systems described by integro-partial-differential equations. Examples have been drawn from a variety of the sciences to illustrate the utility of the techniques presented. This material was organized and written to be accessible to scientists with knowledge of advanced calculus and differential equations. In various concepts from measure theory, ergodic theory, the geometry of manifolds, partial differential equations, probability theory and Markov processes, and chastic integrals and differential equations are introduced. The past few years have witnessed an explosive growth in interest in physical, biological, and economic systems that could be profitably studied using densities. Due to the general inaccessibility of the mathematical literature to the non-mathematician, there has been little diffusion of the concepts and techniques from ergodic theory into the study of these "chaotic" systems. This book intends to bridge that gap.
Smooth Manifolds and Observables is about the differential calculus, smooth manifolds, and commutative algebra. While these theories arose at different times and under completely different circumstances, this book demonstrates how they constitute a unified whole. The motivation behind this synthesis is the mathematical formalization of the process of observation in classical physics. The main objective of this book is to explain how differential calculus is a natural part of commutative algebra. This is achieved by studying the corresponding algebras of smooth functions that result in a general construction of the differential calculus on various categories of modules over the given commutative algebra. It is shown in detail that the ordinary differential calculus and differential geometry on smooth manifolds turns out to be precisely the particular case that corresponds to the category of geometric modules over smooth algebras. This approach opens the way to numerous applications, ranging from delicate questions of algebraic geometry to the theory of elementary particles. This unique textbook contains a large number of exercises and is intended for advanced undergraduates, graduate students, and research mathematicians and physicists.
The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields. While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of compact surfaces with boundaries, narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs. The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems."
This volume is an offspring of the special semester "Ergodic Theory, Geometric Rigidity and Number Theory" held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, from January until July, 2000. Some of the major recent developments in rigidity theory, geometric group theory, flows on homogeneous spaces and Teichmüller spaces, quasi-conformal geometry, negatively curved groups and spaces, Diophantine approximation, and bounded cohomology are presented here. The authors have given special consideration to making the papers accessible to graduate students, with most of the contributions starting at an introductory level and building up to presenting topics at the forefront in this active field of research. The volume contains surveys and original unpublished results as well, and is an invaluable source also for the experienced researcher.
This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Based on many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, the author uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights is the extension of the classical results of the spherical harmonics into the complex - particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Numerous exercises stimulate mathematical ingenuity and bridge the gap between well-known elementary results and their appearance in the new formations. |
You may like...
|