![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
The Latin "Version II," till now attributed to Adelard of Bath, is edited here for the first time. It was the most influential Euclid text in the Latin West in the 12th and 13th centuries. As the large number of manuscripts and the numerous quotations in other scientific and philosophical texts show, it was far better known than the three Euclid translations made from the Arabic in the 12th century (Adelard of Bath, version I; Hermann of Carinthia; Gerard of Cremona). Version II became the basis of later reworkings, in which the enunciations were taken over, but new proofs supplied; the most important text of this kind is the redaction made by Campanus in the late 1250s, which became the standard Latin "Euclid" in the later Middle Ages. The introduction deals with the questions of when and by whom version II was written. Since Marshall Clagett's fundamental article (1953) it has been generally accepted that version II is one of three Euclid texts attributable to Adelard of Bath. But a comparison of the text of version II with those of versions I and III yields little or no reason to assume that Adelard was the author of version II. Version II must have been written later than version I and before version III; its author was acquainted with Euclid texts of the Boethius tradition and with two of those transmitted from Arabic, version I (almost certainly by Adelard) and the version by Hermann of Carinthia.
Smooth Manifolds and Observables is about the differential calculus, smooth manifolds, and commutative algebra. While these theories arose at different times and under completely different circumstances, this book demonstrates how they constitute a unified whole. The motivation behind this synthesis is the mathematical formalization of the process of observation in classical physics. The main objective of this book is to explain how differential calculus is a natural part of commutative algebra. This is achieved by studying the corresponding algebras of smooth functions that result in a general construction of the differential calculus on various categories of modules over the given commutative algebra. It is shown in detail that the ordinary differential calculus and differential geometry on smooth manifolds turns out to be precisely the particular case that corresponds to the category of geometric modules over smooth algebras. This approach opens the way to numerous applications, ranging from delicate questions of algebraic geometry to the theory of elementary particles. This unique textbook contains a large number of exercises and is intended for advanced undergraduates, graduate students, and research mathematicians and physicists.
This book gives a unified treatment of a variety of mathematical systems generating densities, ranging from one-dimensional discrete time transformations through continuous time systems described by integro-partial-differential equations. Examples have been drawn from a variety of the sciences to illustrate the utility of the techniques presented. This material was organized and written to be accessible to scientists with knowledge of advanced calculus and differential equations. In various concepts from measure theory, ergodic theory, the geometry of manifolds, partial differential equations, probability theory and Markov processes, and chastic integrals and differential equations are introduced. The past few years have witnessed an explosive growth in interest in physical, biological, and economic systems that could be profitably studied using densities. Due to the general inaccessibility of the mathematical literature to the non-mathematician, there has been little diffusion of the concepts and techniques from ergodic theory into the study of these "chaotic" systems. This book intends to bridge that gap.
This English edition of Yuri I. Manin's well-received lecture notes provides a concise but extremely lucid exposition of the basics of algebraic geometry and sheaf theory. The lectures were originally held in Moscow in the late 1960s, and the corresponding preprints were widely circulated among Russian mathematicians. This book will be of interest to students majoring in algebraic geometry and theoretical physics (high energy physics, solid body, astrophysics) as well as to researchers and scholars in these areas. "This is an excellent introduction to the basics of Grothendieck's theory of schemes; the very best first reading about the subject that I am aware of. I would heartily recommend every grad student who wants to study algebraic geometry to read it prior to reading more advanced textbooks."- Alexander Beilinson
The first part of this book is a text for graduate courses in
topology. In chapters 1 - 5, part of the basic material of plane
topology, combinatorial topology, dimension theory and ANR theory
is presented. For a student who will go on in geometric or
algebraic topology this material is a prerequisite for later work.
Chapter 6 is an introduction to infinite-dimensional topology; it
uses for the most part geometric methods, and gets to spectacular
results fairly quickly. The second part of this book, chapters 7
& 8, is part of geometric topology and is meant for the more
advanced mathematician interested in manifolds.
This volume is an offspring of the special semester "Ergodic Theory, Geometric Rigidity and Number Theory" held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, from January until July, 2000. Some of the major recent developments in rigidity theory, geometric group theory, flows on homogeneous spaces and Teichmüller spaces, quasi-conformal geometry, negatively curved groups and spaces, Diophantine approximation, and bounded cohomology are presented here. The authors have given special consideration to making the papers accessible to graduate students, with most of the contributions starting at an introductory level and building up to presenting topics at the forefront in this active field of research. The volume contains surveys and original unpublished results as well, and is an invaluable source also for the experienced researcher.
This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Based on many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, the author uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights is the extension of the classical results of the spherical harmonics into the complex - particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Numerous exercises stimulate mathematical ingenuity and bridge the gap between well-known elementary results and their appearance in the new formations.
The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.
Derived from the author's course on the subject, Elements of Differential Topology explores the vast and elegant theories in topology developed by Morse, Thom, Smale, Whitney, Milnor, and others. It begins with differential and integral calculus, leads you through the intricacies of manifold theory, and concludes with discussions on algebraic topology, algebraic/differential geometry, and Lie groups. The first two chapters review differential and integral calculus of several variables and present fundamental results that are used throughout the text. The next few chapters focus on smooth manifolds as submanifolds in a Euclidean space, the algebraic machinery of differential forms necessary for studying integration on manifolds, abstract smooth manifolds, and the foundation for homotopical aspects of manifolds. The author then discusses a central theme of the book: intersection theory. He also covers Morse functions and the basics of Lie groups, which provide a rich source of examples of manifolds. Exercises are included in each chapter, with solutions and hints at the back of the book. A sound introduction to the theory of smooth manifolds, this text ensures a smooth transition from calculus-level mathematical maturity to the level required to understand abstract manifolds and topology. It contains all standard results, such as Whitney embedding theorems and the Borsuk-Ulam theorem, as well as several equivalent definitions of the Euler characteristic.
This volume comprises both research and survey articles originating from the conference on Arithmetic and Geometry around Quantization held in Istanbul in 2006. A wide range of topics related to quantization are covered, thus aiming to give a glimpse of a broad subject in very different perspectives.
Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincare conjecture, the Yau-Tian-Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger-Yau-Zaslow conjecture on mirror symmetry, the relative Yau-Tian-Donaldson conjecture in Kahler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists.The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, symplectic and contact geometry, and complex geometry.
Beginning graduate students in mathematical sciences and related areas in physical and computer sciences and engineering are expected to be familiar with a daunting breadth of mathematics, but few have such a background. This bestselling book helps students fill in the gaps in their knowledge. Thomas A. Garrity explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The explanations are accompanied by numerous examples, exercises and suggestions for further reading that allow the reader to test and develop their understanding of these core topics. Featuring four new chapters and many other improvements, this second edition of All the Math You Missed is an essential resource for advanced undergraduates and beginning graduate students who need to learn some serious mathematics quickly.
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.
Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.
This thesis proposes a new perspective on scattering amplitudes in quantum field theories. Their standard formulation in terms of sums over Feynman diagrams is replaced by a computation of geometric invariants, called intersection numbers, on moduli spaces of Riemann surfaces. It therefore gives a physical interpretation of intersection numbers, which have been extensively studied in the mathematics literature in the context of generalized hypergeometric functions. This book explores physical consequences of this formulation, such as recursion relations, connections to geometry and string theory, as well as a phenomenon called moduli space localization. After reviewing necessary mathematical background, including topology of moduli spaces of Riemann spheres with punctures and its fundamental group, the definition and properties of intersection numbers are presented. A comprehensive list of applications and relations to other objects is given, including those to scattering amplitudes in open- and closed-string theories. The highlights of the thesis are the results regarding localization properties of intersection numbers in two opposite limits: in the low- and the high-energy expansion. In order to facilitate efficient computations of intersection numbers the author introduces recursion relations that exploit fibration properties of the moduli space. These are formulated in terms of so-called braid matrices that encode the information of how points braid around each other on the corresponding Riemann surface. Numerous application of this approach are presented for computation of scattering amplitudes in various gauge and gravity theories. This book comes with an extensive appendix that gives a pedagogical introduction to the topic of homologies with coefficients in a local system.
The process of breaking up a physical domain into smaller sub-domains, known as meshing, facilitates the numerical solution of partial differential equations used to simulate physical systems. In an updated and expanded Second Edition, this monograph gives a detailed treatment based on the numerical solution of inverted Beltramian and diffusion equations with respect to monitor metrics for generating both structured and unstructured grids in domains and on surfaces.
This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered-from introductory theory to algorithmic implementations and some statistical case studies-is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling future scientific challenges. Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves-in one, two, and higher dimensions-both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.
This book is an investigation of the mathematical and philosophical factors underlying the discovery of the concept of noneuclidean geometries, and the subsequent extension of the concept of space. Chapters one through five are devoted to the evolution of the concept of space, leading up to chapter six which describes the discovery of noneuclidean geometry, and the corresponding broadening of the concept of space. The author goes on to discuss concepts such as multidimensional spaces and curvature, and transformation groups. The book ends with a chapter describing the applications of nonassociative algebras to geometry.
Algebraic geometry has a complicated, difficult language. This book contains a definition, several references and the statements of the main theorems (without proofs) for every of the most common words in this subject. Some terms of related subjects are included. It helps beginners that know some, but not all, basic facts of algebraic geometry to follow seminars and to read papers. The dictionary form makes it easy and quick to consult.
Key features: Presents the first elementary introduction to quantum geometry Explores how to understand quantum geometry without prior knowledge beyond bachelor level physics and mathematics. Contains exercises, problems and solutions to supplement and enhance learning
This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.
Starting with the fundamentals of Q spaces and their relationships to Besov spaces, this book presents all major results around Q spaces obtained in the past 16 years. The applications of Q spaces in the study of the incompressible Navier-Stokes system and its stationary form are also discussed. This self-contained book can be used as an essential reference for researchers and graduates in analysis and partial differential equations.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
These are the proceedings of the conference Interesting Algebraic Varieties Arising in Algebraic Transformation Groups Theory that was held at The Erwin Schr] odinger International Institute for Mathematical Physics, Vienna, Austria, from October 22 through October 26, 2001. Theconferencewasmadepossiblethroughinterestand?nancialandor- nizational support of The Erwin Schrodinger ] International Institute for - thematicalPhysics, Vienna, Austria. Onbehalf ofall participantsI thank this institution and especially P. W. Michor, one of its Directors, for this interest and support. It is an empirical fact that many interesting and important algebraic va- eties are intimately related to algebraic transformation groups. To name only some, the examples are a?ne and projective spaces; quadrics; grassman- ans, ?ag and, more generally, spherical (in particular toric) varieties; Sc- bert varieties; nilpotent varieties; determinantal varieties, Severi, Scorza and, more generally, highest vector (HV-) varieties; group varieties; generic tori in algebraic groups; commuting varieties; categorical quotients of Geometric Invariant Theory and the related moduli varieties of curves, vector bundles, abelianvarietiesetc.;simple singularitiesrealizedasthatofthe corresponding categorical quotients and nilpotent orbit closures. The idea of the conference was to trace the new evidences of this relation. Forvariousreasonsseveraltalksgivenduringtheconferencedonotappear intheseproceedings.Belowacompletelistingofalltalksgivenispresentedfor theinformationabouttheconference.Thetalkswhichdoappeararegenerally expanded and/or modi?ed versions of those given during the conference. November 21, 2003 Vladimir L. Popov List of Talks Given at the Conference Interesting Algebraic Varieties Arising in Algebraic Transformation Groups Theory, ESI, Vienna, Austria, October 22 26, 2001 Monday, October 22, 2001 10.30 12.00 DavidJ.Saltman (University of Texas at Austin, Austin, USA), Invariants of Symplectic and Orthogonal Groups of Degree 8." |
![]() ![]() You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R639
Discovery Miles 6 390
|