![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The second edition now includes a geometric approach to Gauss Reduction Theory, classification of integer regular polygons and some further new subjects. Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.
The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. "Rational Points on Elliptic Curves" streses this interplay as it develops the basic theory, thereby providing an opportunity for advance undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make "Rational Points on Elliptic Curves" an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry.
The proceedings from the Abel Symposium on Geometry of Moduli, held at Svinoya Rorbuer, Svolvaer in Lofoten, in August 2017, present both survey and research articles on the recent surge of developments in understanding moduli problems in algebraic geometry. Written by many of the main contributors to this evolving subject, the book provides a comprehensive collection of new methods and the various directions in which moduli theory is advancing. These include the geometry of moduli spaces, non-reductive geometric invariant theory, birational geometry, enumerative geometry, hyper-kahler geometry, syzygies of curves and Brill-Noether theory and stability conditions. Moduli theory is ubiquitous in algebraic geometry, and this is reflected in the list of moduli spaces addressed in this volume: sheaves on varieties, symmetric tensors, abelian differentials, (log) Calabi-Yau varieties, points on schemes, rational varieties, curves, abelian varieties and hyper-Kahler manifolds.
Vladimir Abramovich Rokhlin (8/23/1919-12/03/1984) was one of the leading Russian mathematicians of the second part of the twentieth century. His main achievements were in algebraic topology, real algebraic geometry, and ergodic theory. The volume contains the proceedings of the Conference on Topology, Geometry, and Dynamics: V. A. Rokhlin-Memorial, held from August 19-23, 2019, at The Euler International Mathematics Institute and the Steklov Institute of Mathematics, St. Petersburg, Russia. The articles deal with topology of manifolds, theory of cobordisms, knot theory, geometry of real algebraic manifolds and dynamical systems and related topics. The book also contains Rokhlin's biography supplemented with copies of actual very interesting documents.
The articles in this volume are an outgrowth of an International Confer- ence in Intersection Theory that took place in Bologna, Italy (December 1997). In a somewhat unorthodox format aimed at both the mathematical community as well as summer school students, talks were research-oriented as well as partly expository. There were four series of expository talks by the following people: M. Brion, University of Grenoble, on Equivariant Chow groups and applications; H. Flenner, University of Bochum, on Joins and intersections; E. M. Friedlander, Northwestern University, on Intersection products for spaces of algebraic cycles; R. Laterveer, University of Strasbourg, on Bigraded Chow (co)homology. Four introductory papers cover the following topics and bring the reader to the forefront of research: 1) the excess intersection algorithm of Stuckrad and Vogel, combined with the deformation to the normal cone, together with many of its geo- metric applications; 2) new and very important homotopy theory techniques that are now used in intersection theory; 3) the Bloch-Beilinson filtration and the theory of motives; 4) algebraic stacks, the modern language of moduli theory. Other research articles concern such active fields as stable maps and Gromov-Witten invariants, deformation theory of complex varieties, and others. Organizers of the conference were Rudiger Achilles, Mirella Manaresi, and Angelo Vistoli, all from the University of Bologna; the scientific com- mittee consisted of Geir Ellingsrud, University of Oslo, William Fulton, University of Michigan at Ann Arbor, and Angelo Vistoli. The conference was financed by the European Union (contract no.
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' etre of this series."
Topology-based methods are of increasing importance in the analysis and visualization of dataset from a wide variety of scientific domains such as biology, physics, engineering, and medicine. Current challenges of topology-based techniques include the management of time-dependent data, the representation large and complex datasets, the characterization of noise and uncertainty, the effective integration of numerical methods with robust combinatorial algorithms, etc. (see also below for a list of selected issues). While there is an increasing number of high-quality publications in this field, many fundamental questions remain unsolved. New focused efforts are needed in a variety of techniques ranging from the theoretical foundations of topological models, algorithmic issues related to the representation power of computer-based implementations as well as their computational efficiency, user interfaces for presentation of quantitative topological information, and the development of new techniques for systematic mapping of science problems in topological constructs that can be solved computationally. In this forum the editors have brought together the most prominent and best recognized researchers in the field of topology-based data analysis and visualization for a joint discussion and scientific exchange of the latest results in the field. The 2009 workshop in Snowbird, Utah, follows the two successful workshops in 2005 (Budmerice, Slovakia) and 2007 (Leipzig, Germany).
This book is an outgrowth of the conference "Regulators IV: An International Conference on Arithmetic L-functions and Differential Geometric Methods" that was held in Paris in May 2016. Gathering contributions by leading experts in the field ranging from original surveys to pure research articles, this volume provides comprehensive coverage of the front most developments in the field of regulator maps. Key topics covered are: * Additive polylogarithms * Analytic torsions * Chabauty-Kim theory * Local Grothendieck-Riemann-Roch theorems * Periods * Syntomic regulator The book contains contributions by M. Asakura, J. Balakrishnan, A. Besser, A. Best, F. Bianchi, O. Gregory, A. Langer, B. Lawrence, X. Ma, S. Muller, N. Otsubo, J. Raimbault, W. Raskin, D. Roessler, S. Shen, N. Triantafi llou, S. UEnver and J. Vonk.
This is the second of three volumes that, together, give an exposition of the mathematics of grades 9-12 that is simultaneously mathematically correct and grade-level appropriate. The volumes are consistent with CCSSM (Common Core State Standards for Mathematics) and aim at presenting the mathematics of K-12 as a totally transparent subject. The first part of this volume is devoted to the study of standard algebra topics: quadratic functions, graphs of equations of degree 2 in two variables, polynomials, exponentials and logarithms, complex numbers and the fundamental theorem of algebra, and the binomial theorem. Having translations and the concept of similarity at our disposal enables us to clarify the study of quadratic functions by concentrating on their graphs, the same way the study of linear functions is greatly clarified by knowing that their graphs are lines. We also introduce the concept of formal algebra in the study of polynomials with complex coefficients. The last three chapters in this volume complete the systematic exposition of high school geometry that is consistent with CCSSM. These chapters treat the geometry of the triangle and the circle, ruler and compass constructions, and a general discussion of axiomatic systems, including non-Euclidean geometry and the celebrated work of Hilbert on the foundations. This book should be useful for current and future teachers of K-12 mathematics, as well as for some high school students and for education professionals.
In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function."
The text presents the birational classification of holomorphic foliations of surfaces. It discusses at length the theory developed by L.G. Mendes, M. McQuillan and the author to study foliations of surfaces in the spirit of the classification of complex algebraic surfaces.
This proceedings volume contains articles related to the research presented at the 2019 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning non-abelian aspects This volume contains both original research articles as well as articles that contain both new research as well as survey some of these recent developments.
This text features a careful treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudo-holomorphic curves, and Gromov-Witten invariants (contact homology). In particular, it develops a novel algebraic tool in this field: rooted in the concept of critical points at infinity, the new algebraic invariants defined here are useful in the investigation of contact structures and Reeb vector fields. The book opens with a review of prior results and then proceeds through an examination of variational problems, non-Fredholm behavior, true and false critical points at infinity, and topological implications. An increasing convergence with regular and singular Yamabe-type problems is discussed, and the intersection between contact form and Riemannian geometry is emphasized. Rich in open problems and full, detailed proofs, this work lays the foundation for new avenues of study in contact form geometry and will benefit graduate students and researchers.
Automorphisms of Affine Spaces describes the latest results concerning several conjectures related to polynomial automorphisms: the Jacobian, real Jacobian, Markus-Yamabe, Linearization and tame generators conjectures. Group actions and dynamical systems play a dominant role. Several contributions are of an expository nature, containing the latest results obtained by the leaders in the field. The book also contains a concise introduction to the subject of invertible polynomial maps which formed the basis of seven lectures given by the editor prior to the main conference. Audience: A good introduction for graduate students and research mathematicians interested in invertible polynomial maps.
The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).
Inequalities continue to play an essential role in mathematics. The subject is per haps the last field that is comprehended and used by mathematicians working in all the areas of the discipline of mathematics. Since the seminal work Inequalities (1934) of Hardy, Littlewood and P6lya mathematicians have laboured to extend and sharpen the earlier classical inequalities. New inequalities are discovered ev ery year, some for their intrinsic interest whilst others flow from results obtained in various branches of mathematics. So extensive are these developments that a new mathematical periodical devoted exclusively to inequalities will soon appear; this is the Journal of Inequalities and Applications, to be edited by R. P. Agar wal. Nowadays it is difficult to follow all these developments and because of lack of communication between different groups of specialists many results are often rediscovered several times. Surveys of the present state of the art are therefore in dispensable not only to mathematicians but to the scientific community at large. The study of inequalities reflects the many and various aspects of mathemat ics. There is on the one hand the systematic search for the basic principles and the study of inequalities for their own sake. On the other hand the subject is a source of ingenious ideas and methods that give rise to seemingly elementary but nevertheless serious and challenging problems. There are many applications in a wide variety of fields from mathematical physics to biology and economics."
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne 's rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff 's classical theory on analytic difference equations on the other. |
![]() ![]() You may like...
Automated Hierarchical Synthesis of…
Fabio Passos, Elisenda Roca, …
Hardcover
R1,526
Discovery Miles 15 260
Blockchain Technology: Platforms, Tools…
Pethuru Raj, Ganesh Chandra Deka
Hardcover
R4,474
Discovery Miles 44 740
Dual Mode Logic - A New Paradigm for…
Itamar Levi, Alexander Fish
Hardcover
R2,631
Discovery Miles 26 310
Electronic Experiences in a Virtual Lab
Roberto Gastaldi, Giovanni Campardo
Hardcover
R2,887
Discovery Miles 28 870
|