![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
This textbook introduces exciting new developments and cutting-edge results on the theme of hyperbolicity. Written by leading experts in their respective fields, the chapters stem from mini-courses given alongside three workshops that took place in Montreal between 2018 and 2019. Each chapter is self-contained, including an overview of preliminaries for each respective topic. This approach captures the spirit of the original lectures, which prepared graduate students and those new to the field for the technical talks in the program. The four chapters turn the spotlight on the following pivotal themes: The basic notions of o-minimal geometry, which build to the proof of the Ax-Schanuel conjecture for variations of Hodge structures; A broad introduction to the theory of orbifold pairs and Campana's conjectures, with a special emphasis on the arithmetic perspective; A systematic presentation and comparison between different notions of hyperbolicity, as an introduction to the Lang-Vojta conjectures in the projective case; An exploration of hyperbolicity and the Lang-Vojta conjectures in the general case of quasi-projective varieties. Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces is an ideal resource for graduate students and researchers in number theory, complex algebraic geometry, and arithmetic geometry. A basic course in algebraic geometry is assumed, along with some familiarity with the vocabulary of algebraic number theory.
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in 1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Cuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, combinatorial matrix theory, statistical physics, VLSI design etc. This book offers a comprehensive summary together with a global view, establishing both old and new links. Its treatment ranges from classical theorems of Menger and Schoenberg to recent developments such as approximation results for multicommodity flow and max-cut problems, metric aspects of Delaunay polytopes, isometric graph embeddings, and matrix completion problems. The discussion leads to many interesting subjects that cannot be found elsewhere, providing a unique and invaluable source for researchers and graduate students.
Ten years after a 1989 meeting of number theorists and physicists at the Centre de Physique des Houches, a second event focused on the broader interface of number theory, geometry, and physics. This book is the first of two volumes resulting from that meeting. Broken into three parts, it covers Conformal Field Theories, Discrete Groups, and Renormalization, offering extended versions of the lecture courses and shorter texts on special topics.
This volume contains the Proceedings of the Special Seminar on: FRAGTALS held from October 9-15, 1988 at the Ettore Majorana Centre for Scientific Culture, Erice (Trapani), Italy. The concepts of self-similarity and scale invariance have arisen independently in several areas. One is the study of critical properites of phase transitions; another is fractal geometry, which involves the concept of (non-integer) fractal dimension. These two areas have now come together, and their methods have extended to various fields of physics. The purpose of this Seminar was to provide an overview of the recent developments in the field. Most of the contributions are theoretical, but some experimental work is also included. Du: cing the past few years two tendencies have emerged in this field: one is to realize that many phenomena can be naturally modelled by fractal structures. So one can use this concept to define simple modele and study their physical properties. The second point of view is more microscopic and tries to answer the question: why nature gives rise to fractal structures. This implies the formulation of fractal growth modele based on physical concepts and their theoretical understanding in the same sense as the Renormalization Group method has allowed to understand the critical properties of phase transitions
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner-Weitzenboeck formula and the corresponding Bochner inequality, gradient estimates, Bakry-Ledoux's Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger-Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
This book focuses on important mathematical considerations in describing the synthesis of original mechanisms for generating curves. The synthesis is manual and not based on the use of computer tools. Kinematics is applied to confirm the drawing of the curves, and the closed loop method, and in some cases the distances method, is applied in this phase. The book provides all the notions of structure and kinematics that are necessary to calculate the mechanisms and also analyzes other kinematic possibilities of the created mechanisms. Offering a concise, yet self-contained guide to the mathematical fundamentals for mechanisms of curve generation, together with a useful collection of mechanisms exercises, the book is intended for students learning about mechanism kinematics, as well as engineers dealing with mechanism design and analysis. It is based on the authors' many years of research, which has been published in different books and journals, mainly, but not exclusively, in Romanian.
Geometry: A Metric Approach with Models, imparts a real feeling for Euclidean and non-Euclidean (in particular, hyperbolic) geometry. Intended as a rigorous first course, the book introduces and develops the various axioms slowly, and then, in a departure from other texts, continually illustrates the major definitions and axioms with two or three models, enabling the reader to picture the idea more clearly. The second edition has been expanded to include a selection of expository exercises. Additionally, the authors have designed software with computational problems to accompany the text. This software may be obtained from George Parker.
The package of Gromov's pseudo-holomorphic curves is a major tool in global symplectic geometry and its applications, including mirror symmetry and Hamiltonian dynamics. The Kuranishi structure was introduced by two of the authors of the present volume in the mid-1990s to apply this machinery on general symplectic manifolds without assuming any specific restrictions. It was further amplified by this book's authors in their monograph Lagrangian Intersection Floer Theory and in many other publications of theirs and others. Answering popular demand, the authors now present the current book, in which they provide a detailed, self-contained explanation of the theory of Kuranishi structures. Part I discusses the theory on a single space equipped with Kuranishi structure, called a K-space, and its relevant basic package. First, the definition of a K-space and maps to the standard manifold are provided. Definitions are given for fiber products, differential forms, partitions of unity, and the notion of CF-perturbations on the K-space. Then, using CF-perturbations, the authors define the integration on K-space and the push-forward of differential forms, and generalize Stokes' formula and Fubini's theorem in this framework. Also, "virtual fundamental class" is defined, and its cobordism invariance is proved. Part II discusses the (compatible) system of K-spaces and the process of going from "geometry" to "homological algebra". Thorough explanations of the extension of given perturbations on the boundary to the interior are presented. Also explained is the process of taking the "homotopy limit" needed to handle a system of infinitely many moduli spaces. Having in mind the future application of these chain level constructions beyond those already known, an axiomatic approach is taken by listing the properties of the system of the relevant moduli spaces and then a self-contained account of the construction of the associated algebraic structures is given. This axiomatic approach makes the exposition contained here independent of previously published construction of relevant structures.
An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science.
Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs Applications of statistics on manifolds and shape spaces in medical image computing Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science.
The book consists of articles based on the XXXVII Bialowieza Workshop on Geometric Methods in Physics, 2018. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. This edition of the workshop featured a special session dedicated to Professor Daniel Sternheimer on the occasion of his 80th birthday. The previously unpublished papers present cutting-edge current research, typically grounded in geometry and analysis, with applications to classical and quantum physics. For the past seven years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics comprising a series of advanced lectures for graduate students and early-career researchers. The book also includes abstracts of the five lecture series that were given at the seventh school.
Can we imagine a world without flowers? Flowers are beautiful, offering us delight in their colour, fragrance and form, as well as their medicinal benefits. Flowers also speak to us in the language of the plant form itself, as cultural symbols in different societies, and at the highest levels of inspiration. In this beautiful and original book, renowned thinker and geometrist Keith Critchlow has chosen to focus on an aspect of flowers that has received perhaps the least attention. This is the flower as teacher of symmetry and geometry (the 'eternal verities', as Plato called them). In this sense, he says, flowers can be treated as sources of remembering -- a way of recalling our own wholeness, as well as awakening our inner power of recognition and consciousness. What is evident in the geometry of the face of a flower can remind us of the geometry that underlies all existence. Working from his own flower photographs and with every geometric pattern hand-drawn, the author reviews the role of flowers within the perspective of our relationship with the natural world. His illuminating study is an attempt to re-engage the human spirit in its intimate relation with all nature.
This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Incidence geometry is a central part of modern mathematicsthat has an impressive tradition. The main topics of incidence geometry are projective and affine geometry and, in more recent times, the theory of buildings and polar spaces. Embedded into the modern view of diagram geometry, projective and affine geometry including the fundamental theorems, polar geometry including the Theorem of Buekenhout-Shult and the classification of quadratic sets are presented in this volume. Incidence geometry is developed along the lines of the fascinating work of Jacques Tits and Francis Buekenhout. The book is a clear and comprehensible introduction into a wonderful piece of mathematics. More than 200 figures make even complicated proofs accessible to the reader."
While it is well known that the Delian problems are impossible to solve with a straightedge and compass - for example, it is impossible to construct a segment whose length is cube root of 2 with these instruments - the discovery of the Italian mathematician Margherita Beloch Piazzolla in 1934 that one can in fact construct a segment of length cube root of 2 with a single paper fold was completely ignored (till the end of the 1980s). This comes as no surprise, since with few exceptions paper folding was seldom considered as a mathematical practice, let alone as a mathematical procedure of inference or proof that could prompt novel mathematical discoveries. A few questions immediately arise: Why did paper folding become a non-instrument? What caused the marginalisation of this technique? And how was the mathematical knowledge, which was nevertheless transmitted and prompted by paper folding, later treated and conceptualised? Aiming to answer these questions, this volume provides, for the first time, an extensive historical study on the history of folding in mathematics, spanning from the 16th century to the 20th century, and offers a general study on the ways mathematical knowledge is marginalised, disappears, is ignored or becomes obsolete. In doing so, it makes a valuable contribution to the field of history and philosophy of science, particularly the history and philosophy of mathematics and is highly recommended for anyone interested in these topics.
This book treats that part of Riemannian geometry related to more classical topics in a very original, clear and solid style. Before going to Riemannian geometry, the author presents a more general theory of manifolds with a linear connection. Having in mind different generalizations of Riemannian manifolds, it is clearly stressed which notions and theorems belong to Riemannian geometry and which of them are of a more general nature. Much attention is paid to transformation groups of smooth manifolds. Throughout the book, different aspects of symmetric spaces are treated. The author successfully combines the co-ordinate and invariant approaches to differential geometry, which give the reader tools for practical calculations as well as a theoretical understanding of the subject. The book contains a very useful large Appendix on foundations of differentiable manifolds and basic structures on them which makes it self-contained and practically independent from other sources.
This is the first exposition of the quantization theory of singular symplectic (Marsden-Weinstein) quotients and their applications to physics. The reader will acquire an introduction to the various techniques used in this area, as well as an overview of the latest research approaches. These involve classical differential and algebraic geometry, as well as operator algebras and noncommutative geometry. Thus one will be amply prepared to follow future developments in this field.
This book is devoted to Killing vector fields and the one-parameter isometry groups of Riemannian manifolds generated by them. It also provides a detailed introduction to homogeneous geodesics, that is, geodesics that are integral curves of Killing vector fields, presenting both classical and modern results, some very recent, many of which are due to the authors. The main focus is on the class of Riemannian manifolds with homogeneous geodesics and on some of its important subclasses. To keep the exposition self-contained the book also includes useful general results not only on geodesic orbit manifolds, but also on smooth and Riemannian manifolds, Lie groups and Lie algebras, homogeneous Riemannian manifolds, and compact homogeneous Riemannian spaces. The intended audience is graduate students and researchers whose work involves differential geometry and transformation groups.
This monograph presents a new model of mathematical structures called weak n-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic. While strict n-categories are easily defined in terms associative and unital composition operations they are of limited use in applications, which often call for weakened variants of these laws. The author proposes a new approach to this weakening, whose generality arises not from a weakening of such laws but from the very geometric structure of its cells; a geometry dubbed weak globularity. The new model, called weakly globular n-fold categories, is one of the simplest known algebraic structures yielding a model of weak n-categories. The central result is the equivalence of this model to one of the existing models, due to Tamsamani and further studied by Simpson. This theory has intended applications to homotopy theory, mathematical physics and to long-standing open questions in category theory. As the theory is described in elementary terms and the book is largely self-contained, it is accessible to beginning graduate students and to mathematicians from a wide range of disciplines well beyond higher category theory. The new model makes a transparent connection between higher category theory and homotopy theory, rendering it particularly suitable for category theorists and algebraic topologists. Although the results are complex, readers are guided with an intuitive explanation before each concept is introduced, and with diagrams showing the interconnections between the main ideas and results.
This book expresses the full understanding of Weyl's formula for the volume of a tube, its roots and its implications. Historical notes and Mathematica drawings have been added to this revised second edition. From the reviews: "Will do much to make Weyl's tube formula more accessible to modern readers.... A high point is the presentation of estimates for the volumes of tubes in ambient Riemannian manifolds whose curvature is bounded above or below." --BULLETIN OF THE AMS
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.
This book collects and explains the many theorems concerning the existence of certificates of positivity for polynomials that are positive globally or on semialgebraic sets. A certificate of positivity for a real polynomial is an algebraic identity that gives an immediate proof of a positivity condition for the polynomial. Certificates of positivity have their roots in fundamental work of David Hilbert from the late 19th century on positive polynomials and sums of squares. Because of the numerous applications of certificates of positivity in mathematics, applied mathematics, engineering, and other fields, it is desirable to have methods for finding, describing, and characterizing them. For many of the topics covered in this book, appropriate algorithms, computational methods, and applications are discussed. This volume contains a comprehensive, accessible, up-to-date treatment of certificates of positivity, written by an expert in the field. It provides an overview of both the theory and computational aspects of the subject, and includes many of the recent and exciting developments in the area. Background information is given so that beginning graduate students and researchers who are not specialists can learn about this fascinating subject. Furthermore, researchers who work on certificates of positivity or use them in applications will find this a useful reference for their work.
This monograph, for the first time in book form, considers the large structure of metric spaces as captured by bornologies: families of subsets that contain the singletons, that are stable under finite unions, and that are stable under taking subsets of its members. The largest bornology is the power set of the space and the smallest is the bornology of its finite subsets. Between these lie (among others) the metrically bounded subsets, the relatively compact subsets, the totally bounded subsets, and the Bourbaki bounded subsets. Classes of functions are intimately connected to various bornologies; e.g., (1) a function is locally Lipschitz if and only if its restriction to each relatively compact subset is Lipschitz; (2) a subset is Bourbaki bounded if and only if each uniformly continuous function on the space is bounded when restricted to the subset. A great deal of attention is given to the variational notions of strong uniform continuity and strong uniform convergence with respect to the members of a bornology, leading to the bornology of UC-subsets and UC-spaces. Spaces on which its uniformly continuous real-valued functions are stable under pointwise product are characterized in terms of the coincidence of the Bourbaki bounded subsets with a usually larger bornology. Special attention is given to Lipschitz and locally Lipschitz functions. For example, uniformly dense subclasses of locally Lipschitz functions within the real-valued continuous functions, Cauchy continuous functions, and uniformly continuous functions are presented. It is shown very generally that a function between metric spaces has a particular metric property if and only if whenever it is followed in a composition by a real-valued Lipschitz function, the composition has the property. Bornological convergence of nets of closed subsets, having Attouch-Wets convergence as a prototype, is considered in detail. Topologies of uniform convergence for continuous linear operators between normed spaces is explained in terms of the bornological convergence of their graphs. Finally, the idea of a bornological extension of a topological space is presented, and all regular extensions can be so realized. |
You may like...
Researches on Curves of the Second Order…
George Whitehead Hearn
Paperback
R374
Discovery Miles 3 740
|