![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial trees-again without the need for any compactness or torsionfree assumptions. In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms. One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.
This volume, dedicated to Bertram Kostant on the occasion of his 65th birthday, is a collection of 22 invited papers by leading mathematicians working in Lie theory, geometry, algebra, and mathematical physics. Kostant 's fundamental work in all these areas has provided deep new insights and connections, and has created new fields of research. The papers gathered here present original research articles as well as expository papers, broadly reflecting the range of Kostant 's work.
This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. The volume is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures.
This book is a visually compelling journey through the unique geometric discoveries of Frank Chester, a contemporary sacred geometer, artist, and sculptor. This art-style book with highly polished design elements leads the reader from discovery to discovery, complemented by original text from the author, a PhD who has studied Frank's work from its inception, when it was just seven sticks in a ball of mud on the banks of the American River... From the back cover: The ancient tradition of Sacred Geometry is still alive and well in the person of Frank Chester. He has discovered a new geometric form that unites the five Platonic solids and provides some startling indications about the form and function of the human heart. This new form, called the Chestahedron, was discovered in 2000, and is a seven-sided polyhedron with surfaces of equal area. Frank has been exploring the form and its significance for over a decade. His work has potential implications across a number of areas, from physiology to architecture, sculpture, geology, and beyond. Inspired by the work of Rudolf Steiner, Frank sees a deep connection between form and spirit. This book gives a brief, highly visual overview of some of Frank's discoveries, and presents a compelling series of indications for future research.
This volume provides an introduction to the geometry of manifolds equipped with additional structures connected with the notion of symmetry. The content is divided into five chapters. Chapter I presents the elements of differential geometry which are used in subsequent chapters. Part of the chapter is devoted to general topology, part to the theory of smooth manifolds, and the remaining sections deal with manifolds with additional structures. Chapter II is devoted to the basic notions of the theory of spaces. One of the main topics here is the realization of affinely connected symmetric spaces as totally geodesic submanifolds of Lie groups. In Chapter IV, the most important classes of vector bundles are constructed. This is carried out in terms of differential forms. The geometry of the Euler class is of special interest here. Chapter V presents some applications of the geometrical concepts discussed. In particular, an introduction to modern methods of integration of nonlinear differential equations is given, as well as considerations involving the theory of hydrodynamic-type Poisson brackets with connections to interesting algebraic structures. For mathematicians and mathematical physicists wishing to obtain a good introduction to the geometry of manifolds. This volume can also be recommended as a supplementary graduate text.
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.
The history of the development of Euclidean, non-Euclidean, and relativistic ideas of the shape of the universe, is presented in this lively account by Jeremy Gray. The parallel postulate of Euclidean geometry occupies a unique position in the history of mathematics. In this book, Jeremy Gray reviews the failure of classical attempts to prove the postulate and then proceeds to show how the work of Gauss, Lobachevskii, and Bolyai, laid the foundations of modern differential geometry, by constructing geometries in which the parallel postulate fails. These investigations in turn enabled the formulation of Einstein's theories of special and general relativity, which today form the basis of our conception of the universe. The author has made every attempt to keep the pre-requisites to a bare minimum. This immensely readable account, contains historical and mathematical material which make it suitable for undergraduate students in the history of science and mathematics. For the second edition, the author has taken the opportunity to update much of the material, and to add a chapter on the emerging story of the Arabic contribution to this fascinating aspect of the history of mathematics.
This is the first volume of a three-volume introduction to modern geometry, with emphasis on applications to other areas of mathematics and theoretical physics. Topics covered include tensors and their differential calculus, the calculus of variations in one and several dimensions, and geometric field theory. This material is explained in as simple and concrete a language as possible, in a terminology acceptable to physicists. The text for the second edition has been substantially revised.
¿The present book is a marvelous introduction in the modern theory of manifolds and differential forms. The undergraduate student can closely examine tangent spaces, basic concepts of differential forms, integration on manifolds, Stokes theorem, de Rham- cohomology theorem, differential forms on Riema-nnian manifolds, elements of the theory of differential equations on manifolds (Laplace-Beltrami operators). Every chapter contains useful exercises for the students.¿ ¿ ZENTRALBLATT MATH
This is a monograph on fixed point theory, covering the purely metric aspects of the theory-particularly results that do not depend on any algebraic structure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually checked. These are, respectively, the Banach contraction mapping principal, Nadler's well known set-valued extension of that theorem, the extension of Banach's theorem to nonexpansive mappings, and Caristi's theorem. These comparisons form a significant component of this book. This book is divided into three parts. Part I contains some aspects of the purely metric theory, especially Caristi's theorem and a few of its many extensions. There is also a discussion of nonexpansive mappings, viewed in the context of logical foundations. Part I also contains certain results in hyperconvex metric spaces and ultrametric spaces. Part II treats fixed point theory in classes of spaces which, in addition to having a metric structure, also have geometric structure. These specifically include the geodesic spaces, length spaces and CAT(0) spaces. Part III focuses on distance spaces that are not necessarily metric. These include certain distance spaces which lie strictly between the class of semimetric spaces and the class of metric spaces, in that they satisfy relaxed versions of the triangle inequality, as well as other spaces whose distance properties do not fully satisfy the metric axioms.
The purpose of this book is twofold: to present some basic ideas in commutative algebra and algebraic geometry and to introduce topics of current research, centered around the themes of Groebner bases, resultants and syzygies. The presentation of the material combines definitions and proofs with an emphasis on concrete examples. The authors illustrate the use of software such as Mathematica and Singular. The design of the text in each chapter consists of two parts: the fundamentals and the applications, which make it suitable for courses of various lengths, levels, and topics based on the mathematical background of the students. The fundamentals portion of the chapter is intended to be read with minimal outside assistance, and to learn some of the most useful tools in commutative algebra. The applications of the chapter are to provide a glimpse of the advanced mathematical research where the topics and results are related to the material presented earlier. In the applications portion, the authors present a number of results from a wide range of sources without detailed proofs. The applications portion of the chapter is suitable for a reader who knows a little commutative algebra and algebraic geometry already, and serves as a guide to some interesting research topics. This book should be thought of as an introduction to more advanced texts and research topics. Its novelty is that the material presented is a unique combination of the essential methods and the current research results. The goal is to equip readers with the fundamental classical algebra and geometry tools, ignite their research interests, and initiate some potential research projects in the related areas.
This book is about the light like (degenerate) geometry of submanifolds needed to fill a gap in the general theory of submanifolds. The growing importance of light like hypersurfaces in mathematical physics, in particular their extensive use in relativity, and very limited information available on the general theory of lightlike submanifolds, motivated the present authors, in 1990, to do collaborative research on the subject matter of this book. Based on a series of author's papers (Bejancu [3], Bejancu-Duggal [1,3], Dug gal [13], Duggal-Bejancu [1,2,3]) and several other researchers, this volume was conceived and developed during the Fall '91 and Fall '94 visits of Bejancu to the University of Windsor, Canada. The primary difference between the lightlike submanifold and that of its non degenerate counterpart arises due to the fact that in the first case, the normal vector bundle intersects with the tangent bundle of the submanifold. Thus, one fails to use, in the usual way, the theory of non-degenerate submanifolds (cf. Chen [1]) to define the induced geometric objects (such as linear connection, second fundamental form, Gauss and Weingarten equations) on the light like submanifold. Some work is known on null hypersurfaces and degenerate submanifolds (see an up-to-date list of references on pages 138 and 140 respectively). Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of an up-to-date information on null curves, lightlike hypersur faces and submanifolds, consistent with the theory of non-degenerate submanifolds.
This book is based upon my monograph Index Theory for Hamiltonian Systems with Applications published in 1993 in Chinese, and my notes for lectures and courses given at Nankai University, Brigham Young University, ICTP-Trieste, and the Institute of Mathematics of Academia Sinica during the last ten years. The aim of this book is twofold: (1) to give an introduction to the index theory for symplectic matrix paths and its iteration theory, which form a basis for the Morse theoretical study on Hamilto nian systems, and to give applications of this theory to periodic boundary value problems of nonlinear Hamiltonian systems. Here the iteration theory means the index theory of iterations of periodic solutions and symplectic matrix paths. (2) to serve as a reference book on these topics. There are many different ways to introduce the index theory for symplectic paths in order to establish Morse type index theory of Hamiltonian systems. In this book, I have chosen a relatively elementary way, i.e., the homotopy classification method of symplectic matrix paths. It depends only on linear algebra, point set topology, and certain basic parts of linear functional analysis. I have tried to make this part of the book self-contained and at the same time include all of the major results on these topics so that researchers and students interested in them can read it without substantial difficulties, and can learn the main results in this area for their possible applications."
most polynomial growth on every half-space Re (z)::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are A-P-S] and Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation' (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e-; namely, u(., t) = V(t)uoU. Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* (r)E), locally given by 00 K(x, y; t) = L>-IAk( k (r) 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2:: >- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op."
Modern physics is confronted with a large variety of complex spatial patterns. Although both spatial statisticians and statistical physicists study random geometrical structures, there has been only little interaction between the two up to now because of different traditions and languages. This volume aims to change this situation by presenting in a clear way fundamental concepts of spatial statistics which are of great potential value for condensed matter physics and materials sciences in general, and for porous media, percolation and Gibbs processes in particular. Geometric aspects, in particular ideas of stochastic and integral geometry, play a central role throughout. With nonspecialist researchers and graduate students also in mind, prominent physicists give an excellent introduction here to modern ideas of statistical physics pertinent to this exciting field of research.
This book is a course in general topology, intended for students in the first year of the second cycle (in other words, students in their third univer sity year). The course was taught during the first semester of the 1979-80 academic year (three hours a week of lecture, four hours a week of guided work). Topology is the study of the notions of limit and continuity and thus is, in principle, very ancient. However, we shall limit ourselves to the origins of the theory since the nineteenth century. One of the sources of topology is the effort to clarify the theory of real-valued functions of a real variable: uniform continuity, uniform convergence, equicontinuity, Bolzano-Weierstrass theorem (this work is historically inseparable from the attempts to define with precision what the real numbers are). Cauchy was one of the pioneers in this direction, but the errors that slip into his work prove how hard it was to isolate the right concepts. Cantor came along a bit later; his researches into trigonometric series led him to study in detail sets of points of R (whence the concepts of open set and closed set in R, which in his work are intermingled with much subtler concepts). The foregoing alone does not justify the very general framework in which this course is set. The fact is that the concepts mentioned above have shown themselves to be useful for objects other than the real numbers."
The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.
This book presents problems and solutions in calculus with curvilinear coordinates. Vector analysis can be performed in different coordinate systems, an optimal system considers the symmetry of the problem in order to reduce calculatory difficulty. The book presents the material in arbitrary orthogonal coordinates, and includes the discussion of parametrization methods as well as topics such as potential theory and integral theorems. The target audience primarily comprises university teachers in engineering mathematics, but the book may also be beneficial for advanced undergraduate and graduate students alike.
The textbook Geometry, published in French by CEDICjFernand Nathan and in English by Springer-Verlag (scheduled for 1985) was very favorably re ceived. Nevertheless, many readers found the text too concise and the exercises at the end of each chapter too difficult, and regretted the absence of any hints for the solution of the exercises. This book is intended to respond, at least in part, to these needs. The length of the textbook (which will be referred to as B] throughout this book) and the volume of the material covered in it preclude any thought of publishing an expanded version, but we considered that it might prove both profitable and amusing to some of our readers to have detailed solutions to some of the exercises in the textbook. At the same time, we planned this book to be independent, at least to a certain extent, from the textbook; thus, we have provided summaries of each of its twenty chapters, condensing in a few pages and under the same titles the most important notions and results, used in the solution of the problems. The statement of the selected problems follows each summary, and they are numbered in order, with a reference to the corresponding place in B]. These references are not meant as indications for the solutions of the problems. In the body of each summary there are frequent references to B], and these can be helpful in elaborating a point which is discussed too cursorily in this book."
In 1961 Smale established the generalized Poincare Conjecture in dimensions greater than or equal to 5 [129] and proceeded to prove the h-cobordism theorem [130]. This result inaugurated a major effort to classify all possible smooth and topological structures on manifolds of dimension at least 5. By the mid 1970's the main outlines of this theory were complete, and explicit answers (especially concerning simply connected manifolds) as well as general qualitative results had been obtained. As an example of such a qualitative result, a closed, simply connected manifold of dimension 2: 5 is determined up to finitely many diffeomorphism possibilities by its homotopy type and its Pontrjagin classes. There are similar results for self-diffeomorphisms, which, at least in the simply connected case, say that the group of self-diffeomorphisms of a closed manifold M of dimension at least 5 is commensurate with an arithmetic subgroup of the linear algebraic group of all automorphisms of its so-called rational minimal model which preserve the Pontrjagin classes [131]. Once the high dimensional theory was in good shape, attention shifted to the remaining, and seemingly exceptional, dimensions 3 and 4. The theory behind the results for manifolds of dimension at least 5 does not carryover to manifolds of these low dimensions, essentially because there is no longer enough room to maneuver. Thus new ideas are necessary to study manifolds of these "low" dimensions.
In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of 3. The student's preliminary understanding of higher dimensions is not cultivated."
..".A nice feature of the book is] that at various points the authors provide examples, or rather counterexamples, that clearly show what can go wrong...This is a nicely-written book that] studies algebraic differential modules in several variables." --Mathematical Reviews
C.S. Seshadri turned seventy on the 29th of February, 2002. To mark this occasion, a symposium was held in Chennai, India, where some of his colleagues gave expository talks highlighting Seshadri's contributions to mathematics. This volume includes expanded texts of these talks as well as research and expository papers on geometry and representation theory. It will serve as an excellent reference for researchers and students in these areas.
The volume is a follow-up to the INdAM meeting "Special metrics and quaternionic geometry" held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5-8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon's profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics. |
You may like...
Cognitive Social Mining Applications in…
Anandakumar Haldorai, Arulmurugan Ramu
Hardcover
R4,855
Discovery Miles 48 550
Artificial Intelligence of Things for…
Sarah El Himer, Mariyam Ouaissa, …
Hardcover
R4,706
Discovery Miles 47 060
Getting Started with R - An Introduction…
Andrew P. Beckerman, Dylan Z Childs, …
Hardcover
R3,353
Discovery Miles 33 530
|