![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings:
The geometry of power exponents includes the Newton polyhedron,
normal cones of its faces, power and logarithmic transformations.
On the basis of the geometry universal algorithms for
simplifications of systems of nonlinear equations (algebraic,
ordinary differential and partial differential) were developed.
The main reason I write this book was just to fullfil my long time dream to be able to tutor students. Most students do not bring their text books at home from school. This makes it difficult to help them. This book may help such students as this can be used as a reference in understanding Algebra and Geometry.
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.
This book is an attempt to give a systematic presentation of both
logic and type theory from a categorical perspective, using the
unifying concept of fibred category. Its intended audience consists
of logicians, type theorists, category theorists and (theoretical)
computer scientists.
This book encompasses a wide range of mathematical concepts
relating to regularly repeating surface decoration from basic
principles of symmetry to more complex issues of graph theory,
group theory and topology. It presents a comprehensive means of
classifying and constructing patterns and tilings. The
classification of designs is investigated and discussed forming a
broad basis upon which designers may build their own ideas. A wide
range of original illustrative material is included.
This book features a selection of articles based on the XXXV Bialowieza Workshop on Geometric Methods in Physics, 2016. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Bialowieza Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
The book describes how curvature measures can be introduced for certain classes of sets with singularities in Euclidean spaces. Its focus lies on sets with positive reach and some extensions, which include the classical polyconvex sets and piecewise smooth submanifolds as special cases. The measures under consideration form a complete system of certain Euclidean invariants. Techniques of geometric measure theory, in particular, rectifiable currents are applied, and some important integral-geometric formulas are derived. Moreover, an approach to curvatures for a class of fractals is presented, which uses approximation by the rescaled curvature measures of small neighborhoods. The book collects results published during the last few decades in a nearly comprehensive way.
0 Basic Facts.- 1 Hey's Theorem and Consequences.- 2 Siegel-Weyl Reduction Theory.- 3 The Tamagawa Number and the Volume of G(?)/G(?).- 3.1 Statement of the main result.- 3.2 Proof of 3.1.- 3.3 The volume of G(?)/G(?).- 4 The Size of ?.- 4.1 Statement of results.- 4.2 Proofs.- 5 Margulis' Finiteness Theorem.- 5.1 The Result.- 5.2 Amenable groups.- 5.3 Kazhdan's property (T).- 5.4 Proof of 5.1; beginning.- 5.5 Interlude: parabolics and their opposites.- 5.6 Continuation of the proof.- 5.7 Contracting automorphisms and the Moore Ergodicity theorem.- 5.8 End of proof.- 5.9 Appendix on measure theory.- 6 A Zariski Dense and a Free Subgroup of ?.- 7 An Example.- 8 Problems.- 8.1 Generators.- 8.2 The congruence problem.- 8.3 Betti numbers.- References.
In the series of volumes which together will constitute the
"Handbook of Differential Geometry" a rather complete survey of the
field of differential geometry is given. The different chapters
will both deal with the basic material of differential geometry and
with research results (old and recent). All chapters are written by
experts in the area and contain a large bibliography.
This volume contains a collection of research papers and useful surveys by experts in the field which provide a representative picture of the current status of this fascinating area. Based on contributions from the VIII International Meeting on Lorentzian Geometry, held at the University of Malaga, Spain, this volume covers topics such as distinguished (maximal, trapped, null, spacelike, constant mean curvature, umbilical...) submanifolds, causal completion of spacetimes, stationary regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation between Lorentzian and Finslerian geometries and the oscillator spacetime. In the last decades Lorentzian geometry has experienced a significant impulse, which has transformed it from just a mathematical tool for general relativity to a consolidated branch of differential geometry, interesting in and of itself. Nowadays, this field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathematics and physics. This book is addressed to differential geometers, mathematical physicists and relativists, and graduate students interested in the field.
It has been known for some time that many of the familiar integrable systems of equations are symmetry reductions of self-duality equations on a metric or on a Yang-Mills connection (for example, the Korteweg-de Vries and nonlinear Schroedinger equations are reductions of the self-dual Yang-Mills equation). This book explores in detail the connections between self-duality and integrability, and also the application of twistor techniques to integrable systems. It has two central themes: first, that the symmetries of self-duality equations provide a natural classification scheme for integrable systems; and second that twistor theory provides a uniform geometric framework for the study of Backlund tranformations, the inverse scattering method, and other such general constructions of integrability theory, and that it elucidates the connections between them.
This self-contained book is an exposition of the fundamental ideas of model theory. It presents the necessary background from logic, set theory and other topics of mathematics. Only some degree of mathematical maturity and willingness to assimilate ideas from diverse areas are required. The book can be used for both teaching and self-study, ideally over two semesters. It is primarily aimed at graduate students in mathematical logic who want to specialise in model theory. However, the first two chapters constitute the first introduction to the subject and can be covered in one-semester course to senior undergraduate students in mathematical logic. The book is also suitable for researchers who wish to use model theory in their work.
I The fixed point theorems of Brouwer and Schauder.- 1 The fixed point theorem of Brouwer and applications.- 2 The fixed point theorem of Schauder and applications.- II Measures of noncompactness.- 1 The general notion of a measure of noncompactness.- 2 The Kuratowski and Hausdorff measures of noncompactness.- 3 The separation measure of noncompactness.- 4 Measures of noncompactness in Banach sequences spaces.- 5 Theorem of Darbo and Sadovskii and applications.- III Minimal sets for a measure of noncompactness.- 1 o-minimal sets.- 2 Minimalizable measures of noncompactness.- IV Convexity and smoothness.- 1 Strict convexity and smoothness.- 2 k-uniform convexity.- 3 k-uniform smoothness.- V Nearly uniform convexity and nearly uniform smoothness.- 1 Nearly uniformly convex Banach spaces.- 2 Nearly uniformly smooth Banach spaces.- 3 Uniform Opial condition.- VI Fixed points for nonexpansive mappings and normal structure.- 1 Existence of fixed points for nonexpansive mappings: Kirk's theorem.- 2 The coefficient N(X) and its connection with uniform convexity.- 3 The weakly convergent sequence coefficient.- 4 Uniform smoothness, near uniform convexity and normal structure.- 5 Normal structure in direct sum spaces.- 6 Computation of the normal structure coefficients in Lp-spaces.- VII Fixed point theorems in the absence of normal structure.- 1 Goebel-Karlovitz's lemma and Lin's lemma.- 2 The coefficient M(X) and the fixed point property.- VIII Uniformly Lipschitzian mappings.- 1 Lifshitz characteristic and fixed points.- 2 Connections between the Lifshitz characteristic and certain geometric coefficients.- 3 The normal structure coefficient and fixed points.- IX Asymptotically regular mappings.- 1 A fixed point theorem for asymptotically regular mappings.- 2 Connections between the ?-characteristic and some other geometric coefficients.- 3 The weakly convergent sequence coefficient and fixed points.- X Packing rates and o-contractiveness constants.- 1 Comparable measures of noncompactness.- 2 Packing rates of a metric space.- 3 Connections between the packing rates and the normal structure coefficients.- 4 Packing rates in lp-spaces.- 5 Packing rates in Lpspaces.- 6 Packing rates in direct sum spaces.- References.- List of Symbols and Notations.
This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration. With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since.
This book provides an introduction to topological groups and the structure theory of locally compact abelian groups, with a special emphasis on Pontryagin-van Kampen duality, including a completely self-contained elementary proof of the duality theorem. Further related topics and applications are treated in separate chapters and in the appendix.
This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.
The fascinating world of canonical moments--a unique look at this
practical, powerful statistical and probability tool
The subject of nonlinear partial differential equations is experiencing a period of intense activity in the study of systems underlying basic theories in geometry, topology and physics. These mathematical models share the property of being derived from variational principles. Understanding the structure of critical configurations and the dynamics of the corresponding evolution problems is of fundamental importance for the development of the physical theories and their applications. This volume contains survey lectures in four different areas, delivered by leading resarchers at the 1995 Barrett Lectures held at The University of Tennessee: nonlinear hyperbolic systems arising in field theory and relativity (S. Klainerman); harmonic maps from Minkowski spacetime (M. Struwe); dynamics of vortices in the Ginzburg-Landau model of superconductivity (F.-H. Lin); the Seiberg-Witten equations and their application to problems in four-dimensional topology (R. Fintushel). Most of this material has not previously been available in survey form. These lectures provide an up-to-date overview and an introduction to the research literature in each of these areas, which should prove useful to researchers and graduate students in mathematical physics, partial differential equations, differential geometry and topology. |
You may like...
Consumer Behaviour and Sustainable…
Subramanian Senthilkannan Muthu
Hardcover
R2,636
Discovery Miles 26 360
Ethical Consumerism and Comparative…
Ebtihaj Ahmad Al-A'ali, Meryem Masmoudi
Hardcover
R4,331
Discovery Miles 43 310
Interfirm Networks - Franchising…
Josef Windsperger, Gerard Cliquet, …
Hardcover
R2,691
Discovery Miles 26 910
The February Man - Evolving…
Milton H. Erickson, Ernest Lawrence Rossi
Hardcover
R4,245
Discovery Miles 42 450
The Essentials of Marketing Research
Lawrence Silver, Robert E. Stevens, …
Paperback
R2,613
Discovery Miles 26 130
|