![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry
The Hardy-Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
The innovative use of sliceforms to explore the properties of surfaces is produced in a systematic way, providing the tools to build surfaces from paper to explore their mathematics. The extensive commentary explains the mathematics behind particular surfaces: an exercise in practical geometry that will stimulate ideas for the student and the enthusiast, as well as having practical applications in engineering and architecture.
This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmuller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.
The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen's formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub's expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.
Since Benoit Mandelbrot's pioneering work in the late 1970s, scores of research articles and books have been published on the topic of fractals. Despite the volume of literature in the field, the general level of theoretical understanding has remained low; most work is aimed either at too mainstream an audience to achieve any depth or at too specialized a community to achieve widespread use. Written by celebrated mathematician and educator A.A. Kirillov, A Tale of Two Fractals is intended to help bridge this gap, providing an original treatment of fractals that is at once accessible to beginners and sufficiently rigorous for serious mathematicians. The work is designed to give young, non-specialist mathematicians a solid foundation in the theory of fractals, and, in the process, to equip them with exposure to a variety of geometric, analytical, and algebraic tools with applications across other areas.
The ancient Greeks believed that everything in the Universe should be describable in terms of geometry. This thesis takes several steps towards realising this goal by introducing geometric descriptions of systems such as quantum gravity, fermionic particles and the origins of the Universe itself. The author extends the applicability of previous work by Vilkovisky, DeWitt and others to include theories with spin 1/2 and spin 2 degrees of freedom. In addition, he introduces a geometric description of the potential term in a quantum field theory through a process known as the Eisenhart lift. Finally, the methods are applied to the theory of inflation, where they show how geometry can help answer a long-standing question about the initial conditions of the Universe. This publication is aimed at graduate and advanced undergraduate students and provides a pedagogical introduction to the exciting topic of field space covariance and the complete geometrization of quantum field theory.
A Concise Introduction to Algebraic Varieties is designed for a one-term introductory course on algebraic varieties over an algebraically closed field, and it provides a solid basis for a course on schemes and cohomology or on specialized topics, such as toric varieties and moduli spaces of curves. The book balances generality and accessibility by presenting local and global concepts, such as nonsingularity, normality, and completeness using the language of atlases, an approach that is most commonly associated with differential topology. The book concludes with a discussion of the Riemann-Roch theorem, the Brill-Noether theorem, and applications. The prerequisites for the book are a strong undergraduate algebra course and a working familiarity with basic point-set topology. A course in graduate algebra is helpful but not required. The book includes appendices presenting useful background in complex analytic topology and commutative algebra and provides plentiful examples and exercises that help build intuition and familiarity with algebraic varieties.
This book focuses on a selection of special topics, with emphasis on past and present research of the authors on "canonical" Riemannian metrics on smooth manifolds. On the backdrop of the fundamental contributions given by many experts in the field, the volume offers a self-contained view of the wide class of "Curvature Conditions" and "Critical Metrics" of suitable Riemannian functionals. The authors describe the classical examples and the relevant generalizations. This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
Alfred Tarski (1901-1983) was a renowned Polish/American mathematician, a giant of the twentieth century, who helped establish the foundations of geometry, set theory, model theory, algebraic logic and universal algebra. Throughout his career, he taught mathematics and logic at universities and sometimes in secondary schools. Many of his writings before 1939 were in Polish and remained inaccessible to most mathematicians and historians until now. This self-contained book focuses on Tarski's early contributions to geometry and mathematics education, including the famous Banach-Tarski paradoxical decomposition of a sphere as well as high-school mathematical topics and pedagogy. These themes are significant since Tarski's later research on geometry and its foundations stemmed in part from his early employment as a high-school mathematics teacher and teacher-trainer. The book contains careful translations and much newly uncovered social background of these works written during Tarski's years in Poland. Alfred Tarski: Early Work in Poland serves the mathematical, educational, philosophical and historical communities by publishing Tarski's early writings in a broadly accessible form, providing background from archival work in Poland and updating Tarski's bibliography. A list of errata can be found on the author Smith's personal webpage.
The objective of this book is to look at certain commutative graded algebras that appear frequently in algebraic geometry. By studying classical constructions from geometry from the point of view of modern commutative algebra, this carefully-written book is a valuable source of information, offering a careful algebraic systematization and treatment of the problems at hand, and contributing to the study of the original geometric questions. In greater detail, the material covers aspects of rational maps (graph, degree, birationality, specialization, combinatorics), Cremona transformations, polar maps, Gauss maps, the geometry of Fitting ideals, tangent varieties, joins and secants, Aluffi algebras. The book includes sections of exercises to help put in practice the theoretic material instead of the mere complementary additions to the theory.
This volume combines an introduction to central collineations with an introduction to projective geometry, set in its historical context and aiming to provide the reader with a general history through the middle of the nineteenth century. Topics covered include but are not limited to: The Projective Plane and Central Collineations The Geometry of Euclid's Elements Conic Sections in Early Modern Europe Applications of Conics in History With rare exception, the only prior knowledge required is a background in high school geometry. As a proof-based treatment, this monograph will be of interest to those who enjoy logical thinking, and could also be used in a geometry course that emphasizes projective geometry.
The Seventh ARTA ('Advances in Representation Theory of Algebras VII') conference took place at the Instituto de Matematicas of the Universidad Nacional Autonoma de Mexico, in Mexico City, from September 24-28, 2018, in honor of Jose Antonio de la Pena's 60th birthday. Papers in this volume cover topics Professor de la Pena worked on, such as covering theory, tame algebras, and the use of quadratic forms in representation theory. Also included are papers on the categorical approach to representations of algebras and relations to Lie theory, Cohen-Macaulay modules, quantum groups and other algebraic structures.
This book reports on an original approach to problems of loci. It shows how the theory of mechanisms can be used to address the locus problem. It describes the study of different loci, with an emphasis on those of triangle and quadrilateral, but not limited to them. Thanks to a number of original drawings, the book helps to visualize different type of loci, which can be treated as curves, and shows how to create new ones, including some aesthetic ones, by changing some parameters of the equivalent mechanisms. Further, the book includes a theoretical discussion on the synthesis of mechanisms, giving some important insights into the correlation between the generation of trajectories by mechanisms and the synthesis of those mechanisms when the trajectory is given, and presenting approximate solutions to this problem. Based on the authors' many years of research and on their extensive knowledge concerning the theory of mechanisms, and bridging between geometry and mechanics, this book offers a unique guide to mechanical engineers and engineering designers, mathematicians, as well as industrial and graphic designers, and students in the above-mentioned fields alike.
Algebraic & geometry methods have constituted a basic background and tool for people working on classic block coding theory and cryptography. Nowadays, new paradigms on coding theory and cryptography have arisen such as: Network coding, S-Boxes, APN Functions, Steganography and decoding by linear programming. Again understanding the underlying procedure and symmetry of these topics needs a whole bunch of non trivial knowledge of algebra and geometry that will be used to both, evaluate those methods and search for new codes and cryptographic applications. This book shows those methods in a self-contained form.
This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.
An infinite-dimensional manifold is a topological manifold modeled on some infinite-dimensional homogeneous space called a model space. In this book, the following spaces are considered model spaces: Hilbert space (or non-separable Hilbert spaces), the Hilbert cube, dense subspaces of Hilbert spaces being universal spaces for absolute Borel spaces, the direct limit of Euclidean spaces, and the direct limit of Hilbert cubes (which is homeomorphic to the dual of a separable infinite-dimensional Banach space with bounded weak-star topology). This book is designed for graduate students to acquire knowledge of fundamental results on infinite-dimensional manifolds and their characterizations. To read and understand this book, some background is required even for senior graduate students in topology, but that background knowledge is minimized and is listed in the first chapter so that references can easily be found. Almost all necessary background information is found in Geometric Aspects of General Topology, the author's first book. Many kinds of hyperspaces and function spaces are investigated in various branches of mathematics, which are mostly infinite-dimensional. Among them, many examples of infinite-dimensional manifolds have been found. For researchers studying such objects, this book will be very helpful. As outstanding applications of Hilbert cube manifolds, the book contains proofs of the topological invariance of Whitehead torsion and Borsuk's conjecture on the homotopy type of compact ANRs. This is also the first book that presents combinatorial -manifolds, the infinite-dimensional version of combinatorial n-manifolds, and proofs of two remarkable results, that is, any triangulation of each manifold modeled on the direct limit of Euclidean spaces is a combinatorial -manifold and the Hauptvermutung for them is true.
How do you draw a heptagon? What about a heptakaidecagon? How do you fit circles perfectly into triangles? And around them? If the computer is down - could you do it with ruler and compass? In this unique little book, Andrew Sutton guides you through the once treasured principles of ruler and compass constructions, used for centuries by architects, carpenters, stonemasons and master craftsmen. Designed to last until the lights go out, this is a timeless book. WOODEN BOOKS are small but packed with information. "Fascinating" FINANCIAL TIMES. "Beautiful" LONDON REVIEW OF BOOKS. "Rich and Artful" THE LANCET. "Genuinely mind-expanding" FORTEAN TIMES. "Excellent" NEW SCIENTIST. "Stunning" NEW YORK TIMES. Small books, big ideas.
"Presents a summary of selected mathematics topics from college/university level mathematics courses. Fundamental principles are reviewed and presented by way of examples, figures, tables and diagrams. It condenses and presents under one cover basic concepts from several different applied mathematics topics"--P. [4] of cover. |
![]() ![]() You may like...
Chaos and Complex Systems - Proceedings…
Stavros G. Stavrinides, Mehmet Ozer
Hardcover
R5,867
Discovery Miles 58 670
Virtual Equivalent System Approach for…
Weicun Zhang, Qing Li
Hardcover
R3,020
Discovery Miles 30 200
Geometric Integrators for Differential…
Xinyuan Wu, Bin Wang
Hardcover
R3,638
Discovery Miles 36 380
Interconnected Power Systems - Wide-Area…
Yong Li, Dechang Yang, …
Hardcover
Recent Developments in Acoustics…
Mahavir Singh, Yasser Rafat
Hardcover
R7,132
Discovery Miles 71 320
Progress in Turbulence VIII…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
R4,625
Discovery Miles 46 250
|