![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry
This book is devoted to group-theoretic aspects of topological dynamics such as studying groups using their actions on topological spaces, using group theory to study symbolic dynamics, and other connections between group theory and dynamical systems. One of the main applications of this approach to group theory is the study of asymptotic properties of groups such as growth and amenability. The book presents recently developed techniques of studying groups of dynamical origin using the structure of their orbits and associated groupoids of germs, applications of the iterated monodromy groups to hyperbolic dynamical systems, topological full groups and their properties, amenable groups, groups of intermediate growth, and other topics. The book is suitable for graduate students and researchers interested in group theory, transformations defined by automata, topological and holomorphic dynamics, and theory of topological groupoids. Each chapter is supplemented by exercises of various levels of complexity.
The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen's formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub's expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.
In the series of volumes which together will constitute the
"Handbook of Differential Geometry" we try to give a rather
complete survey of the field of differential geometry. The
different chapters will both deal with the basic material of
differential geometry and with research results (old and recent).
"Presents a summary of selected mathematics topics from college/university level mathematics courses. Fundamental principles are reviewed and presented by way of examples, figures, tables and diagrams. It condenses and presents under one cover basic concepts from several different applied mathematics topics"--P. [4] of cover.
Advanced Topics in Linear Algebra presents, in an engaging style, novel topics linked through the Weyr matrix canonical form, a largely unknown cousin of the Jordan canonical form discovered by Eduard Weyr in 1885. The book also develops much linear algebra unconnected to canonical forms, that has not previously appeared in book form. It presents common applications of Weyr form, including matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry, with the latter two having topical connections to phylogenetic invariants in biomathematics and multivariate interpolation. The Weyr form clearly outperforms the Jordan form in many situations, particularly where two or more commuting matrices are involved, due to the block upper triangular form a Weyr matrix forces on any commuting matrix. In this book, the authors develop the Weyr form from scratch, and include an algorithm for computing it. The Weyr form is also derived ring-theoretically in an entirely different way to the classical derivation of the Jordan form. A fascinating duality exists between the two forms that allows one to flip back and forth and exploit the combined powers of each. The book weaves together ideas from various mathematical disciplines, demonstrating dramatically the variety and unity of mathematics. Though the book's main focus is linear algebra, it also draws upon ideas from commutative and noncommutative ring theory, module theory, field theory, topology, and algebraic geometry. Advanced Topics in Linear Algebra offers self-contained accounts of the non-trivial results used from outside linear algebra, and lots of worked examples, thereby making it accessible to graduate students. Indeed, the scope of the book makes it an appealing graduate text, either as a reference or for an appropriately designed one or two semester course. A number of the authors' previously unpublished results appear as well.
The objective of this book is to look at certain commutative graded algebras that appear frequently in algebraic geometry. By studying classical constructions from geometry from the point of view of modern commutative algebra, this carefully-written book is a valuable source of information, offering a careful algebraic systematization and treatment of the problems at hand, and contributing to the study of the original geometric questions. In greater detail, the material covers aspects of rational maps (graph, degree, birationality, specialization, combinatorics), Cremona transformations, polar maps, Gauss maps, the geometry of Fitting ideals, tangent varieties, joins and secants, Aluffi algebras. The book includes sections of exercises to help put in practice the theoretic material instead of the mere complementary additions to the theory.
This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings:
The geometry of power exponents includes the Newton polyhedron,
normal cones of its faces, power and logarithmic transformations.
On the basis of the geometry universal algorithms for
simplifications of systems of nonlinear equations (algebraic,
ordinary differential and partial differential) were developed.
The main reason I write this book was just to fullfil my long time dream to be able to tutor students. Most students do not bring their text books at home from school. This makes it difficult to help them. This book may help such students as this can be used as a reference in understanding Algebra and Geometry.
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.
This book is an attempt to give a systematic presentation of both
logic and type theory from a categorical perspective, using the
unifying concept of fibred category. Its intended audience consists
of logicians, type theorists, category theorists and (theoretical)
computer scientists.
This book features a selection of articles based on the XXXV Bialowieza Workshop on Geometric Methods in Physics, 2016. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Bialowieza Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
The book describes how curvature measures can be introduced for certain classes of sets with singularities in Euclidean spaces. Its focus lies on sets with positive reach and some extensions, which include the classical polyconvex sets and piecewise smooth submanifolds as special cases. The measures under consideration form a complete system of certain Euclidean invariants. Techniques of geometric measure theory, in particular, rectifiable currents are applied, and some important integral-geometric formulas are derived. Moreover, an approach to curvatures for a class of fractals is presented, which uses approximation by the rescaled curvature measures of small neighborhoods. The book collects results published during the last few decades in a nearly comprehensive way.
0 Basic Facts.- 1 Hey's Theorem and Consequences.- 2 Siegel-Weyl Reduction Theory.- 3 The Tamagawa Number and the Volume of G(?)/G(?).- 3.1 Statement of the main result.- 3.2 Proof of 3.1.- 3.3 The volume of G(?)/G(?).- 4 The Size of ?.- 4.1 Statement of results.- 4.2 Proofs.- 5 Margulis' Finiteness Theorem.- 5.1 The Result.- 5.2 Amenable groups.- 5.3 Kazhdan's property (T).- 5.4 Proof of 5.1; beginning.- 5.5 Interlude: parabolics and their opposites.- 5.6 Continuation of the proof.- 5.7 Contracting automorphisms and the Moore Ergodicity theorem.- 5.8 End of proof.- 5.9 Appendix on measure theory.- 6 A Zariski Dense and a Free Subgroup of ?.- 7 An Example.- 8 Problems.- 8.1 Generators.- 8.2 The congruence problem.- 8.3 Betti numbers.- References.
This volume contains a collection of research papers and useful surveys by experts in the field which provide a representative picture of the current status of this fascinating area. Based on contributions from the VIII International Meeting on Lorentzian Geometry, held at the University of Malaga, Spain, this volume covers topics such as distinguished (maximal, trapped, null, spacelike, constant mean curvature, umbilical...) submanifolds, causal completion of spacetimes, stationary regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation between Lorentzian and Finslerian geometries and the oscillator spacetime. In the last decades Lorentzian geometry has experienced a significant impulse, which has transformed it from just a mathematical tool for general relativity to a consolidated branch of differential geometry, interesting in and of itself. Nowadays, this field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathematics and physics. This book is addressed to differential geometers, mathematical physicists and relativists, and graduate students interested in the field. |
You may like...
Methods and Materials for Remote Sensing…
Yuri Abrahamian, Radik Martirossyan, …
Hardcover
R2,739
Discovery Miles 27 390
Optical Sensors, Devices and Systems
Vladimir Latinovic
Hardcover
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,217
Discovery Miles 52 170
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
CMOS Imagers - From Phototransduction to…
orly yadid-pecht, Ralph Etienne-Cummings
Hardcover
R4,146
Discovery Miles 41 460
Introduction to Electro-optical Imaging…
Khalil Seyrafi, S.A. Hovanessian
Hardcover
R3,713
Discovery Miles 37 130
|