![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Pre-clinical medicine: basic sciences > Physiology
The discovery and genetic engineering of fluorescent proteins has revolutionized cell biology. What was previously invisible in the cell often can be made visible with the use of fluorescent proteins. In Vivo Cellular Imaging Using Fluorescent Proteins: Methods and Protocols presents state-of-the-art research that has contributed to the fluorescent protein revolution to visualize biological processes in the live animal. This volume covers an array of topics from the employment of the chick CAM model using fluorescent proteins and other fluorescent probes, to intravital fluorescent imaging, as well as 3-dimensional imaging, and design instructions on how to create new and improved far-red and infrared fluorescent proteins, to name a few. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, In Vivo Cellular Imaging Using Fluorescent Proteins: Methods and Protocols is the first volume in the new field of in vivo cell biology and it serves both professionals and novices with its well-honed methodologies.
This book provides a comprehensive look at nonhuman primate social inequalities as models for health differences associated with socioeconomic status in humans. The benefit of the socially-housed monkey model is that it provides the complexity of hierarchical structure and rank affiliation, i.e. both negative and positive aspects of social status. At the same time, nonhuman primates are more amenable to controlled experiments and more invasive studies that can be used in human beings to examine the effects of low status on brain development, neuroendocrine function, immunity, and eating behavior. Because all of these biological and behavioral substrates form the underpinnings of human illness, and are likely shared among primates, the nonhuman primate model can significantly advance our understanding of the best interventions in humans.
The concept of immunotherapy was in infancy when the first edition was written; since then, major advances have been made, not only with several prominent clinical trials, but also with the approval of cell-based therapy by the FDA for the treatment of cancer in 2010. These events resulted in a gradually narrowing gap between early scientific knowledge and the late development of immune-based therapies. Consequently, the significance and magnitude of these advances warranted a revision of this contribution; this revised edition will provide a deeper understanding of the recent advances and discoveries related to the function of the immune response and their applications in the development of novel therapies to treat human diseases. Some of the key discoveries during the past five years include: the identification of the new subsets of helper T cells; new cytokines and their networks; and novel signal transduction mechanisms. For example, the identification of TH17 subset of helper T cells, in addition to TH1 and TH2 cells, not only advanced our understanding of the function of the basic immune response, but also raised our awareness of the possible etiology and pathogenesis of diseases such as allergy, asthma, rheumatoid arthritis, and other auto-immune/immune system based diseases. The newly identified powerful cytokine networks, that regulate both innate and acquired immune responses, emerged as a result of the finding of new cell types such as innate lymphoid cells and iNKT. Identification of the novel cytokines and their networks has advanced our knowledge of the mechanisms involved in the maintenance of tissue homeostasis, including inflammation and tissue repair during stress and injury. The development of HIV vaccines has also seen dramatic changes over the last few years. There has been a shift from a sole focus on T cell vaccines to a holistic approach that pertains to the induction of both humoral and cellular elements. This entails the induction of antibodies - both binding and neutralizing - to prevent infection. The cellular vaccination produces a safety net of CD8+ T-cell responses to suppress the replication of the virus in the infected patients, and both of the effector arms are aided by helper T cells. From the perspective of clinical applications, significant advances have also been made in: oral immunotherapy for allergic disease, the possible treatment of HIV infection, the development of new monoclonal antibodies and their fragments to treat human diseases, and immune cell based therapies for cancer.
The Human Respiratory System combines emerging ideas from biology and mathematics to show the reader how to produce models for the development of biomedical engineering applications associated with the lungs and airways. Mathematically mature but in its infancy as far as engineering uses are concerned, fractional calculus is the basis of the methods chosen for system analysis and modelling. This reflects two decades' worth of conceptual development which is now suitable for bringing to bear in biomedical engineering. The text reveals the latest trends in modelling and identification of human respiratory parameters with a view to developing diagnosis and monitoring technologies. Of special interest is the notion of fractal structure which is indicative of the large-scale biological efficiency of the pulmonary system. The related idea of fractal dimension represents the adaptations in fractal structure caused by environmental factors, notably including disease. These basics are linked to model the dynamical patterns of breathing as a whole. The ideas presented in the book are validated using real data generated from healthy subjects and respiratory patients and rest on non-invasive measurement methods. The Human Respiratory System will be of interest to applied mathematicians studying the modelling of biological systems, to clinicians with interests outside the traditional borders of medicine, and to engineers working with technologies of either direct medical significance or for mitigating changes in the respiratory system caused by, for example, high-altitude or deep-sea environments.
Debates and controversies about how to treat difficult problems or conditions abound in cardiac electrophysiology.? This issue attempts to bring together a variety of controversial subjects and to present differing views on how to resolve these questions so clinicians will have a handy guide to the most current thinking about these difficult subjects.
An overview of all the available literature on the various aspects of the regulation of the cardiovascular system`s function and physiology by the adrenergic neurohormonal system, i.e. the catecholamines norepinephrine and epinephrine. Although there are several books describing the adrenergic system`s biology, physiology and pharmacology, and also several excellent books on cardiovascular physiology and pathology, this book focuses exclusively on the interface of these two areas: cardiovascular regulation by the adrenergic system and how it affects cardiovascular diseases and their treatments. Each chapter describe the roles of the adrenergic system first in each cardiovascular cell type (cell type-by-cell type) and then in specific areas of cardiovascular physiology, such as in exercise and in cardiovascular metabolism. Finally, the book concludes with a chapter on the adrenergic system`s role in the currently very "hot" (in terms of scientific investigations) area of cardiovascular stem cell biology. The book covers the adrenergic system-specifically and exclusively in the heart and vessels. It is formatted by cardiovascular cell type-by-cell type manner, rather than in an organ-by-organ or in a disease-by-disease manner, as usually discussed in standard, conventional biomedical textbooks. The book also discusses the adrenergic system in novel, cutting-edge cardiovascular research areas, in which it has not been covered well so far (e.g. stem cells, exercise). These three areas constitute the most important assets of the book, which sets it apart from others in the field.
How does contemporary science contribute to our understanding about what it means to be women or men? What are the social implications of scientific claims about differences between ""male"" and ""female"" brains, hormones, and genes? How does culture influence scientific and medical research and its findings about human sexuality, especially so-called normal and deviant desires and behaviours? Gender and the Science of Difference examines how contemporary science shapes and is shaped by gender ideals and images. Prior scholarship has illustrated how past cultures of science were infused with patriarchal norms and values that influenced the kinds of research that was conducted and the interpretation of findings about differences between men and women. This interdisciplinary volume presents empirical inquiries into today's science, including examples of gendered scientific inquiry and medical interventions and research. It analyses how scientific and medical knowledge produces gender norms through an emphasis on sex differences, and includes both U.S. and non-U.S. cases and examples.
The discovery of vitamins in the early 1900s, their later chemical characterization and the clarification of pivotal metabolic functions are sequential aspects of a brilliant chapter in the history of modern nutritional sciences and medicine. The name, derived from "vital-amines", indicates their elementary metabolic key functions in human metabolism. Vitamins are truly families of compounds, which include precursors and various free and bound forms, all with individual roles in metabolism and function. A more recent approach therefore searches for the components, the understanding of their roles in physiology and pathology as well as looking for novel pharmacological applications. When used properly, vitamins are, indeed, "magical" substances. Due to their efficacy, they should therefore be regarded as drugs with effects and side effects to be weighted against each other. Today, it is not the previously fatal deficiency-associated diseases that are in the focus of interest, but rather the relation of suboptimal vitamin bioavailability to chronic disease. This is complicated by genetic susceptibility, lifestyle, and the presence or absence of health-compromising habits, such as smoking. In turn, the development and application of new and more sensitive and specific assays further enable us to look more closely into the many functions of vitamins. Water soluble vitamins are complex molecular structures and even today, many areas in vitamin biochemistry are not yet fully understood. Novel effects and functions of vitamins remain and continue to be discovered. This book presents most recent research results and fascinating new knowledge on the role and effects of the water soluble vitamins in man. Some of the most distinguished chemists, biochemists, biologists and clinicians have contributed valuable chapters sharing unexpected novel insights into the biochemistry, (epi)genetics, metabolism, and function of water soluble vitamins, with their potential for clinical applications. Thus, physicians, clinicians, scientists, researchers, epidemiologists. nutritional specialists and health professionals alike will find stimulating and fascinating new insight in the many roles that water soluble vitamins play in human health and disease.
As the first primer on the effects of exercise on human hypertension, Effects of Exercise on Hypertension: From Cells to Physiological Systems provides the state-of-the-art effects of exercise on the many possible mechanisms underlying essential hypertension in humans. The book contains chapters by distinguished experts on the effects of exercise on physiological systems known to be involved in hypertension development and maintenance as well as less well known aspects of hypertension such as 24-hour ambulatory blood pressure profile and oxidative stress. An emerging area, the effects of resistance exercise training on blood pressure is also covered. A unique aspect of the book is that it covers the effects of exercise mimetics on vascular cell adaptations in order to begin to elucidate some of the cellular mechanisms that may underlie blood pressure reductions with exercise training. Lastly, the book will end with a chapter on the interactive effects of genes and exercise on blood pressure. Chapters are grouped by physiological system or mechanism. The text begins with two overview chapters; one on the general effects of aerobic exercise training and the second on the general effects of resistance exercise training on blood pressure. Each chapter begins with a bulleted list of key points. Effects of Exercise on Hypertension: From Cells to Physiological Systems will be of great value to professional individuals in cardiovascular medicine, the cardiovascular sciences, allied health care professionals, and medical and graduate students in the cardiovascular sciences and medicine.
This volume presents key topics of current interest with regard to several pathophysiological conditions including (a) the basic and clinical aspects of bradykinin receptor antagonists, (b) the kallikrein-kinin pathways in hypertension and diabetes, (c) tissue kallikrein-kinin therapy for hypertension and organ damage, (d) the renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension, (e) the kallikrein-kinin system in diabetes retinopathy and (f) genetic manipulation and genetic variation of the kallikrein-kinin system and their impacts on cardiovascular and renal disease. Written by internationally reputed scientists, the book provides an essential overview of the latest developments in the field of kinin research, making it a valuable asset for endocrinologists, nephrologists, cardiologists, pharmacologists, physiologists, ophthalmologists and rheumatologists. Furthermore, it is also intended for postgraduate students in the fields of medicine, pharmacy, physiology and pharmacology and those working at research organizations.
"Our Genes, Our Choices: How Genotype and Gene Interactions Affect Behavior" explains how the complexity of human behavior, including concepts of free will, derives from a relatively small number of genes, which direct neurodevelopmental sequence. Are people free to make choices, or do genes determine behavior? Paradoxically, the answer to both questions is "yes," because of neurogenetic individuality, a new theory with profound implications. Author David Goldman uses judicial, political, medical, and ethical examples to illustrate that this lifelong process is guided by individual genotype, molecular and physiologic principles, as well as by randomness and environmental exposures, a combination of factors that we choose and do not choose. Written in an authoritative yet accessible style, the book
includes practical descriptions of the function of DNA, discusses
the scientific and historical bases of genethics, and introduces
topics of epigenetics and the predictive power of behavioral
genetics.
This book addresses two fundamental issues of motor control for both humans and robots: kinematic redundancy and the posture/movement problem. It blends traditional robotic constrained-optimal approaches with neuroscientific and evidence-based principles, proposing a "Task-space Separation Principle," a novel scheme for planning both posture and movement in redundant manipulators. The proposed framework is first tested in simulation and then compared with experimental motor strategies displayed by humans during redundant pointing tasks. The book also shows how this model builds on and expands traditional formulations such as the Passive Motion Paradigm and the Equilibrium Point Theory. Lastly, breaking with the neuroscientific tradition of planar movements and linear(ized) kinematics, the theoretical formulation and experimental scenarios are set in the nonlinear space of 3D rotations which are essential for wrist motions, a somewhat neglected area despite its importance in daily tasks.
This volume explores some of the most exciting recent advances in
basic research on protein phosphorylation in health and disease and
how this knowledge is leading to advances in the various fields.
Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field
Cardiac electrophysiologists face many challenging situations in which there is no clear-cut answer about the best way to handle a particular clinical problem. This issue brings together articles on many such situations, presents arguments on both sides, and lets the reader conclude which is the best way to manage a particular patient.? Among the controversial and debatable topics included are how to handle device recalls, optimal timing for assessment of ICD efficacy, extraction o f broken leads, and anticoagulation therapy in device patients.
Written by leading researchers, this text explores the intersection of genetics and metabolomics, and points the way to more comprehensive studies of inborn variation of metabolism. All chapters refer to one or more published experimental datasets.
This volume explores some of the most exciting recent advances in
basic research on cellular RNA interference mechanisms and how this
knowledge is leading to advances in the various fields.
Cardiovascular disease is the leading cause of morbidity and premature death of modern era medicine. It is estimated that approximately 81 million people in the United States (US) currently have one or more of the many forms of cardiovascular disease, resulting in 1 in every 2.8 deaths, or 900,000 deaths per year. 40% of all deaths in Europe are a result of cardiovascular disease in people under the age of 75. Aneurysms form a significant portion of these cardiovascular related deaths and are defined as a permanent and irreversible localised dilation of a blood vessel greater than 50% of its normal diameter. Although aneurysms can form in any blood vessel, the more lethal aneurysms develop in the cranial arteries, and in the thoracic aorta and abdominal aorta. Frequently aneurysms are undetected and if left untreated may eventually expand until rupture with very high levels of morbidity and mortality. The biomechanics and mechanobiology of aneursymal diseases are not fully understood and this monograph aims to provide new insights into aneurysm aetiology and behavior based on the most recent biomechanics research related to this important topic. The contributors to this volume bring together a unique blend of expertise in experimental, computational and tissue biomechanics relating to aneurysm behavior and enable the reader to gain a fresh understanding of key factors influencing aneurysm behavior and treatment. Biological risk factors such as tobacco smoking, sex, age, hypertension, family history and mechanobiological risk factors such as aneurysm geometry and shape as well as mechanical properties of the diseased tissues are considered in detail as are many of the diagnostic and treatment options.
Serpins are a group of proteins with similar structures that were first identified as a set of proteins able to inhibit proteases. The acronym serpin was originally coined because many serpins inhibit chymotrypsin-like serine proteases. This volume of "Methods in Ezymology" is split into 2 parts and comprehensively covers the subject.
Pathophysiological states, neurological and psychiatric diseases are almost universally considered from the neurocentric point of view, with neurons being the principal cellular element of pathological process. The brain homeostasis, which lies at the fulcrum of healthy brain function, the compromise of which invariably results in dysfunction/disease, however, is entirely controlled by neuroglia. It is becoming clear that neuroglial cells are involved in various aspects of initiation, progression and resolution of neuropathology. In this book we aim to integrate the body of information that has accumulated in recent years revealing the active role of glia in such pathophysiological processes. Understanding roles of glial cells in pathology will provide new targets for medical intervention and aide the development of much needed therapeutics. This book will be particularly useful for researchers, students, physicians and psychotherapists working in the field of neurobiology, neurology and psychiatry.
The book "Paradigm Shift for Future Tennis" starts with revelations that make obvious the limitations of today's tennis, which does not use the laws of modern Biomechanics and Neurophysiology. The second part of the book includes a new approach to the quantum mind of a champion. It will reveal the secret weapon of Roger Federer and the blueprint of a future tennis champion. This book will expose the new tennis shot emerging from the field of sports science. It is a real weapon, which can generate a ball-speed similar to that of the first serve: the Power High-Forehand. Its aim is to generate maximal possible racket-head speed while players do not wait for the ball to bounce. This is both a tactical and psychological basis for the future tennis game. This aggressive interceptive psychology will shape the minds of future tennis champions. High racket-head speed can be achieved using the stretch-reflex, without big loops and swings. Weapons of a future tennis game will comprise of whip-like tennis serves and ground strokes, based on the stretch-reflex, and using the whole body in a fluid and integrated manner, thus manifesting a superb combination of speed and strength. Restructure your brain and apply the power of state of the art biomechanical, mathematical, medical, neural, cognitive, and quantum computational intelligence to understand the tennis of today and the future
Calcium ions represent Mother Nature's 'ion-of-choice' for regulating fundamental physiological functions, as they initiate a new life at the time of fertilization and guide subsequent developmental and physiological functions of the human body. Calcium channels, which act as gated pathways for the movement of calcium ions across the membranes, play a central part in the initiation of calcium signals, and defects in calcium channel function have been found to result in a plethora of human diseases, referred to as the calcium channelopathies. Pathologies of Calcium Channels brings together leading international experts to discuss our current understanding of human diseases associated with the various calcium channels, from their molecular basis to potential future therapeutic targeting of calcium channels.
This book sheds new light on the development and use of quantitative models to describe the process of skin permeation. It critically reviews the development of quantitative predictive models of skin absorption and discusses key recommendations for model development. Topics presented include an introduction to skin physiology; the underlying theories of skin absorption; the physical laboratory-based processes used to generate skin absorption data, which is in turn used to construct mathematical models describing the skin permeation process; algorithms of skin permeability including quantitative structure-activity (or permeability) relationships (QSARs or QSPRs); relationships between permeability and molecular properties; the development of formulation-focused approaches to models of skin permeability prediction; the use of artificial membranes, e.g. polydimethylsiloxane as alternatives to mammalian skin; and lastly, the use of novel Machine Learning methods in developing the next generation of predictive skin permeability models. The book will be of interest to all researchers in academia and industry working in pharmaceutical discovery and development, as well as readers from the field of occupational exposure and risk assessment, especially those whose work involves agrochemicals, bulk chemicals and cosmetics.
This book sheds new light on the physiology, molecular biology and pathophysiology of epithelial ion channels and transporters. It combines the basic cellular models and functions by means of a compelling clinical perspective, addressing aspects from the laboratory bench to the bedside. The individual chapters, written by leading scientists and clinicians, explore specific ion channels and transporters located in the epithelial tissues of the kidney, intestine, pancreas and respiratory tract, all of which play a crucial part in maintaining homeostasis. Further topics include the fundamentals of epithelial transport; mathematical modeling of ion transport; cell volume regulation; membrane protein folding and trafficking; transepithelial transport functions; and lastly, a discussion of transport proteins as potential pharmacological targets with a focus on the pharmacology of potassium channels. |
You may like...
Data Analytics for Social Microblogging…
Soumi Dutta, Asit Kumar Das, …
Paperback
R3,335
Discovery Miles 33 350
The Cognitive Approach in Cloud…
Dinesh Peter, Amir Alavi, …
Paperback
R2,435
Discovery Miles 24 350
Successfully Implementing Microsoft…
Reinder Koop, Ester Muris
Hardcover
R1,420
Discovery Miles 14 200
Computational Intelligence for Big Data…
D P Acharjya, Satchidananda Dehuri, …
Hardcover
Mathematical Methods in Data Science
Jingli Ren, Haiyan Wang
Paperback
R3,925
Discovery Miles 39 250
|