Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Pre-clinical medicine: basic sciences > Physiology
This work provides the reader with various sets of questions and answers related to basic human physiology. The questions are formulated to test concepts and assess the thinking process in physiology and to discover any misperceptions in the current knowledge of physiology. Readers will find that this book has been split into three main themes; cardiovascular, respiratory and renal physiology. The homeostatic mechanisms within each system will be covered. In addition, the functional integration of the physiology of these three organ systems will also be considered. The author of this physiology question-based learning book has taught physiology for more than twenty five years. He is also the pioneer of the physiology quiz, which he facilitates as quiz master, for which he generates the challenging physiology questions. This book is a distillation of the questions asked at the international editions of the physiology quiz. This physiology question-based learning book will be useful to all students of physiology in medicine, dentistry, pharmacy and other allied health sciences. This question-based learning text aims to provoke thinking and it should make learning physiology both enjoyable and challenging.
The central nervous system, which includes the brain and spinal cord, has a high metabolic demand. The physiology of the brain is such that it is easily affected by alterations in other systems, which in turn can compromise cerebral blood flow and oxygenation. Together the brain and spinal cord control the automatic function of our body systems. While other systems of body controls individual functions, central nervous system at the same time does many different functions, especially, controlling the function of other systems. This interaction between the brain and other systems is important when it comes to understanding how injuries to the brain can, at times, produce complications in remote organs or systems of the body, such as the lungs. This book explains the lesser-known crosstalks between acutely or chronically affected brain and lung, describing the pathophysiology of the lung following brain injury and discussing in detail the conflicts between the brain and lungs in relation to the tidal volumes, positive end-expiratory pressures, arterial carbon dioxide and oxygen levels, recruitment maneuvers and positioning, as well as potential therapeutic targets.
This volume provides state-of-the-art techniques for studying various aspects of cholesterol homeostasis, including its uptake, synthesis and efflux from the cell, as well as its trafficking within the cell. Chapters also cover techniques for studying the regulation of cholesterol homeostasis at both the transcriptional and post-translational levels, as well as studying the membrane topology and structure of cholesterol-related proteins. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cholesterol Homeostasis: Methods and Protocols aims to provide key techniques in tackling the investigation of cholesterol homeostasis.
The cyclic purine nucleotides 3',5'-cAMP and 3',5'-cGMP are well-established second messengers. cGMP has recently been covered in a volume of the Handbook of Experimental Pharmacology (volume 191). In addition to 3',5'-cAMP and 3',5'-cGMP, so-called non-canonical cyclic nucleotides exist. These comprise the cyclic pyrimidine nucleotides 3',5'-cCMP and 3',5'-cUMP, the purine nucleotide 3',5'-cIMP, the 2',3'-nucleoside monophosphates and cyclic dinucleotides. In this volume of the Handbook of Pharmacology, word-leading experts in the field summarize our current knowledge on these non-canonical cyclic nucleotides, discuss open questions, future research directions and the pharmacotherapeutic implications. Special emphasis will be given to the emerging roles of 3',5'-cCMP and 3',5'-cUMP as second messengers with regard to generators, effectors, biological functions, inactivation and bacterial toxins. The role of 3',5'-cIMP as potential second messenger will also be critically discussed. Furthermore, we will consider transport of cyclic nucleotides and their potential role as first messengers. The role of the cyclic dinucleotide cGAMP in the immune system will covered, too. Lastly, the book will present important methodological aspects ranging from mass-spectrometric methods for cyclic nucleotide detection to the synthesis of nucleotide analogs as experimental tools and holistic methods for analysis of cyclic nucleotide effects.
Neurophysiology of Breathing Control: Neurobiology of Breathing Control: Where to Look and What to Look for; J.L. Feldman New Computational Models of the Respiratory Oscillator in Mammals; J.C. Smith Is the Pattern of Breathing at Rest Chaotic? A Test of the Lyapunov Exponent; R.L. Hughson, et al. Pathophysiology of Breathing Control and Breathing Awake and Asleep: Breathing Patterns under Enflurane, Halothane and Propofol Sedation in Humans B. Nagyova, et al. Possible Genomic Mechanism Involved in Control Systems Responses to Hypoxia; N.S. Cherniack, et al. Asynchronous Thoracoabdominal Movements in Chronic Airflow Obstruction (CAO): Active Expiration during Spontaneous Breathing in Sleep and Wakefulness; M.D. Goldman, et al. Exercise and Pulmonary Ventilation: Exercise Hyperapnea: Chairman's Introduction; J.A. Dempsey Respiratory Compensation as Evidenced by a Declining Arterial and End-tidal PCO2 Is Attenuated during Fast Ramp Exercise Functions; B.W. Scheuermann, J.M. Kowalchuk Chemical Control of Breathing: Respiratory Responses to Hypoxia: Peripheral and Central Effects: Chairman's Introductory Communication; A. Berkenbosch, et al. Hypoxic Ventilatory Depression May Be Due to Central Chemoreceptor Cell Hyperpolarization; J.W. Severinghaus 57 additional articles. Index.
The goal of this book is to close the gap between high technology and accessibility for people having lost their independence due to the loss of physical and/or cognitive capabilities. Robots and mechatronic devices bring the opportunity to improve the autonomy of disabled people and facilitate their social and professional integration by assisting them to perform daily living tasks. Technical topics of interest include, but are not limited to: Communication and learning applications in SCI an CP, Interface and Internet-based designs, Issues in human-machine interaction, Personal robotics, Hardware and control, Evaluation methods, Clinical experience, Orthotics and prosthetics, Robotics for older adults, Service robotics, Movement physiology and motor control.
This book examines the new knowledge that has been gained from the objective monitoring of habitual physical activity by means of pedometers and accelerometers. It reviews current advances in the technology of activity monitoring and details advantages of objective monitors relative to physical activity questionnaires. It points to continuing gaps in knowledge, and explores the potential for further advances in the design of objective monitoring devices. Epidemiologists have studied relationships between questionnaire assessments of habitual physical activity and various medical conditions for some seventy years. In general, they have observed positive associations between regular exercise and good health, but because of inherent limitations in the reliability and accuracy of physical activity questionnaires, optimal exercise recommendations for the prevention and treatment of disease have remained unclear. Inexpensive pedometers and accelerometers now offer the epidemiologist the potential to collect relatively precisely graded and objective information on the volume, intensity and patterns of effort that people are undertaking, to relate this data to past and future health experience, and to establish dose/response relationships between physical activity and the various components of health. Such information is important both in assessing the causal nature of the observed associations and in establishing evidence-based recommendations concerning the minimal levels of daily physical activity needed to maintain good health.
This expert volume covers an interdisciplinary and rapidly growing area of biomedical research comprising genetic, biochemical, pathological, and clinical studies aimed at the diagnosis and therapy of human diseases which are either caused by or associated with mitochondrial dysfunction. It dedicates itself to showcasing the tremendous efforts and the progress that has been made over the last decades in developing techniques and protocols for probing, imaging, and manipulating mitochondrial functions. Mitochondrial Medicine: Volume II, Manipulating Mitochondrial Function describes techniques developed for manipulating and assessing mitochondrial function under general pathological conditions and specific disease states. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and practical, Mitochondrial Medicine provides an essential source of know-how and inspiration to all researchers who are fascinated by this tiny organelle that seems so clearly to control the life and death of a single cell and whole organisms alike.
In a normal physiological state, several bacteria are present in the human gut that is essential to maintain the normal to healthy gastrointestinal function. Disturbances in this "normal flora" lead to gut inflammation and infection. This volume explores the potential of probiotics, the healthy bacteria, to manage gut-related diseases including gastrointestinal cancers, ulcerative colitis, H. pylori infections, and diarrhea; vaginosis; oral health; airway inflammation; and atopic dermatitis. The concept of designer probiotics, edible vaccines and future scope of research in the field is also presented. The animal models used for studying the benefits of probiotics in gut inflammation are described for beginners.
This book presents the current concepts of semaphorin biology. In the early 1990s, semaphorins were originally identified as axon guidance cues that function during neuronal development. However, cumulative findings have clarified that they have diverse functions in many physiological processes, including cardiogenesis, angiogenesis, vasculogenesis, osteoclastogenesis, retinal homeostasis, and immune regulation. Additionally, they have been implicated in the pathogenesis of various human diseases, including tumorigenesis/tumor metastasis, neuroregenerative diseases, retinal degeneration, irregular pulse/sudden death, and immune disorders. Based on this current research background, the book covers the essential state-of-the-art findings for basic scientists in biochemistry, molecular biology, neuroscience, developmental biology, and structural biology, as well as for physicians in neurology, cardiology, oncology, orthopedic surgery, otorhinolaryngology, ophthalmology, allergology, and rheumatology.
The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls and the myocardium are discussed and the important influence of residual stresses on material response emphasized. The mechanics and function of the heart, the brain and adipose tissues are discussed as well. Particular attention is focused on microstructural and multi-scale modeling, finite element implementation and simulation of cells and tissues.
Humans receive the vast majority of sensory perception through the eyes and ears. This non-technical book examines the everyday physics behind hearing and vision to help readers understand more about themselves and their physical environment. It begins wit
This book illustrates the significance and relevance of immunotherapy in modern-day therapeutics. Focusing on the application of immunotherapy in oncology, neurodegenerative and autoimmune diseases, it discusses the drug delivery systems, and pre-clinical and clinical methodologies for immunotherapy-based drugs. It also comprehensively reviews various aspects of immunotherapy, such as regulatory affairs, quality control, safety, and pharmacovigilance. Further, the book discusses the in vitro validation of therapeutic strategies prior to patient application and management of immunotherapy-related side effects and presents case studies demonstrating the design and development (pre-clinical to clinical) of immunotherapy for various diseases. It also describes various design considerations and the scale-up synthesis of immunotherapeutics and screening methods. Lastly, it explores the important aspect of cost-effectiveness and rational immunotherapy strategies.
T. Hara, I. Kimura, D. Inoue, A. Ichimura, and A. Hirasawa: Free fatty acid receptors and their role in regulation of energy metabolism. B. Nilius and G. Appendino. Spices: the savory and healthy science of pungency.
This volume is comprised of 18 chapters, covering various aspects of DNA modification and RNA modified bases. It also discusses in detail circular RNA, therapeutic oligonucleotides and their different properties. The chemical nature of DNA, RNA, protein and lipids makes these macromolecules easily modifiable, but they are also susceptible to damage from both endogenous and exogenous agents. Alkylation and oxidation show a potential to disrupt the cellular redox equilibrium and cause cellular damage leading to inflammation and even chronic disease. Furthermore, DNA damage can drive mutagenesis and the resulting DNA sequence changes can induce carcinogenesis and cancer progression. Modified nucleosides can occur as a result of oxidative DNA damage and RNA turnover, and are used as markers for various diseases. To function properly some RNA needs to be chemically modified post-transcriptionally. Dysregulation of the RNA-modification pattern or of the levels of the enzymes that catalyze these modifications alters RNA functionality and can result in complex phenotypes, likely due to defects in protein translation. While modifications are best characterized in noncoding ribonucleic acids like tRNA and rRNA, coding mRNAs have also been found to contain modified nucleosides. This book is a valuable resource, not only for graduate students but also researchers in the fields of molecular medicine and molecular biology.
This book summarizes the latest advances in pain research. All the chapters were contributed by speakers from Asian Pain Symposium (APS) on Acute and Chronic Pain, which was held in Taipei in 2017. Founded in Kyoto, Japan in 2000, the APS serves as a platform for scientists to present recent findings in pain research and discuss research orientation in this field. APS 2017 focused on novel strategies for pain treatment. Written by experts from various disciplines, from molecular to functional, and from basic to clinic studies, this book is composed of 18 review articles on the physiology and pathology of pain in these research fields. Specific topics include circuitry, neurotransmitter, physiology, behavior, neuropathology, pharmacology, and the treatments for neuropathic pain disorders. The book is a valuable resource for researchers and graduate students in pain medicine and neuroscience.
This is the first book to assemble the leading researchers in the field of LRRK2 biology and neurology and provide a snapshot of the current state of knowledge, encompassing all major aspects of its function and dysfunction. The contributors are experts in cell biology and physiology, neurobiology, and medicinal chemistry, bringing a multidisciplinary perspective on the gene and its role in disease. The book covers the identification of LRRK2 as a major contributor to the pathogenesis of Parkinson's Disease. It also discusses the current state of the field after a decade of research, putative normal physiological roles of LRRK2, and the various pathways that have been identified in the search for the mechanism(s) of its induction of neurodegeneration.
This edited volume collects the research results presented at the 14th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Tel Aviv, Israel, 2016. The topical focus includes, but is not limited to, cardiovascular fluid dynamics, computer modeling of tissue engineering, skin and spine biomechanics, as well as biomedical image analysis and processing. The target audience primarily comprises research experts in the field of bioengineering, but the book may also be beneficial for graduate students alike.
The concept of immunotherapy was in infancy when the first edition was written; since then, major advances have been made, not only with several prominent clinical trials, but also with the approval of cell-based therapy by the FDA for the treatment of cancer in 2010. These events resulted in a gradually narrowing gap between early scientific knowledge and the late development of immune-based therapies. Consequently, the significance and magnitude of these advances warranted a revision of this contribution; this revised edition will provide a deeper understanding of the recent advances and discoveries related to the function of the immune response and their applications in the development of novel therapies to treat human diseases. Some of the key discoveries during the past five years include: the identification of the new subsets of helper T cells; new cytokines and their networks; and novel signal transduction mechanisms. For example, the identification of TH17 subset of helper T cells, in addition to TH1 and TH2 cells, not only advanced our understanding of the function of the basic immune response, but also raised our awareness of the possible etiology and pathogenesis of diseases such as allergy, asthma, rheumatoid arthritis, and other auto-immune/immune system based diseases. The newly identified powerful cytokine networks, that regulate both innate and acquired immune responses, emerged as a result of the finding of new cell types such as innate lymphoid cells and iNKT. Identification of the novel cytokines and their networks has advanced our knowledge of the mechanisms involved in the maintenance of tissue homeostasis, including inflammation and tissue repair during stress and injury. The development of HIV vaccines has also seen dramatic changes over the last few years. There has been a shift from a sole focus on T cell vaccines to a holistic approach that pertains to the induction of both humoral and cellular elements. This entails the induction of antibodies - both binding and neutralizing - to prevent infection. The cellular vaccination produces a safety net of CD8+ T-cell responses to suppress the replication of the virus in the infected patients, and both of the effector arms are aided by helper T cells. From the perspective of clinical applications, significant advances have also been made in: oral immunotherapy for allergic disease, the possible treatment of HIV infection, the development of new monoclonal antibodies and their fragments to treat human diseases, and immune cell based therapies for cancer.
Leading researchers are specially invited to provide a complete understanding of a key topic within the multidisciplinary fields of physiology, biochemistry and pharmacology. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields. |
You may like...
Productivity with Health, Safety, and…
Lakhwinder Pal Singh, Arvind Bhardwaj, …
Hardcover
R5,244
Discovery Miles 52 440
Physiology of Sport and Exercise
W. Larry Kenney, Jack H. Wilmore, …
Hardcover
Trigger Points - Use the Power of Touch…
Amanda Oswald
Hardcover
(1)
Loose Leaf for Hole's Human Anatomy…
Charles Welsh, Cynthia Prentice-Craver
Loose-leaf
R5,028
Discovery Miles 50 280
Essentials of Anatomy & Physiology…
Frederic Martini, Edwin Bartholomew
Paperback
R2,234
Discovery Miles 22 340
Eureka: Biochemistry & Metabolism
Andrew Davison, Anna Milan, …
Paperback
|