![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
Surface Active Agents (surfactants) are vital components in biological systems, form key ingredients in consumer products and play an important role in many industrial processes. For example, cell membranes owe their structure to the aggregation of surfactants known as lipids which form a major component of the membrane. Other natural surfactants occur in the digestive system, in the lungs, and even in such substances as crude oil. Man-made surfactants are used in a wide range of domestic and industrial products and processes. In addition to detergents and personal care products, surfactants have found uses in almost every branch of the chemical industry as well as in several other industries. These include dyestuffs, fibres, mineral process ing, oil field chemicals, paints, pesticides, pharmaceuticals and plastics. Surfactants are versatile materials which are manufactured in a huge variety of forms to suit all of these applications. As a result of their importance, the technical literature on all aspects of surfactant behaviour is now very extensive. Surprisingly, however, the treatment in textbooks has been somewhat fragmented, often in the form of conference proceedings or edited, multi-authored works, both lacking in continuity."
This book represents the proceedings of the First International Conference on Frontiers of Polymer Research held in New Delhi, India during January 20-25, 1991. Polymers have usually been perceived as substances to be used in insulations, coatings, fabrics, and structural materials. Defying this classical view, polymers are emerging as a new class of materials with potential applications in many new technologies. They also offer challenging opportunities for fundamental research. Recognizing a tremendous growth in world wide interest in polymer research and technology, a truly global "1st International Conference on Frontiers of Polymer Research" was organized by P. N. Prasad (SUNY at Buffalo), F. E. Karasz (University of Massachusetts) and J. K. Nigam (Shriram Institute for Industrial Research, India). The 225 participants represented 25 countries and a wide variety of academic, industrial and government groups. The conference was inaugurated by the Prime Minister of India, Mr. Chandra Shekhar and had a high level media coverage. The focus of the conference was on three frontier areas of polymer research: (i) Polymers for photonics, where nonlinear optical properties of polymers show great promise, (ii) Polymers for electronics, where new conduction mechanisms and photophysics have generated considerable enthusiasm and (iii) High performance polymers as new advanced polymers have exhibited exceptionally high mechanical strength coupled with light weight.
This handbook provides essential practical information for Industrial and State Control Laboratories and others concerned with ensuring compliance with European Community directive 90/128/EEC relating to plastic materials and articles intended to come into contact with foodstuffs. This new book on additives used in plastics for food contact can be seen as a companion to Spectra for the Identification of Monomers in Food Packaging (Kluwer Academic Publishers, 1993). The handbook begins with a chapter describing the legal framework and the implementation of the European legislation. There is a brief description of the Dutch fast method to test compliance with legislation using this handbook. Then, a collection of spectra is given for the identification of a hundred of the most important additives used in plastic packaging and coatings. These additives were selected from Synoptic Document N. 7 after extensive consultation with researchers in the field and with representatives from European industry. For every additive there is an entry in the handbook giving the structural formula, CAS and PM number and trivial name, together with information on physical characteristics, the food contact uses of the derived plastic materials. There is a brief description of the analytical approach for testing compliance with SML or QM limits and reference to the literature including European research projects. FT-IR, MS and 1H-NMR spectra are proved in standard format for each substance, and gas-chromatographic retention data are provided as a help in identification. Most of the additives listed in this volume will be made available on request as reference substances as either the pure substance or as a calibrant solution.
Existing surfactants directories tend to focus on product identification by tradename, producer or chemical type, enabling the user only to identify product equivalents and surfactant suppliers. Application information, where available, is usually scant or given as a footnote. This new directory approaches the identification of surfactants primarily from the applications standpoint. Hence the formulator or end-user can readily assess the products available for use in a particular industry sector and select materials giving the required surface active properties. For example, a formulator of agrochemicals for crop protection can turn to the section which refers to surfactants for use in the agrochemical industry and then easily identify a wetter/dispersant system for the production of water dispersible granules. Information is presented in an alternative format in the second part of the directory, which will help the user to identify swiftly products for a particular application by surface active properties. It is difficult, if not impossible, to identify an industry which does not directly or indirectly utilise surfactants. Therefore it has proved necessary to simplify industry classifications to encompass a variety of uses under broader sector titles. The industry classifications adopted here have been used in many previous publications and papers, and define as accurately as possible the major industries and applications serviced by the surfactant industry. The editors have been particularly pleased with the support and response of the industry in the supply of data."
In order to adapt the properties of living materials to their biological functions, nature has developed unique polyelectrolytes with outstanding physical, chemical and mechanical behavior. Namely polyampholytes can be suitable substances to model protein folding phenomenon and enzymatic activity most of biological macromolecules due to the presence of acidic and basic groups. The ability of linear and crosslinked amphoteric macromolecules to adopt globular, coil, helix and stretched conformations and to demonstrate coil-globule, helix-coil phase transitions, and sol-gel, collapsed expanded volume changes in relation to internal (nature and distribution of acid and base substituents, copolymer composition, hydrophobicity etc. ) and external (pH, temperature, ionic strength of the solution, thermodynamic quality of solvents etc. ) factors is very important and constantly attracts the attention of theorists and experimentalists because the hierarchy of amphoteric macromolecules can repeat, more or less, the structural organization of proteins. That is why polyampholytes fall within eyeshot of several disciplines, at least polymer chemistry and physics, molecular biology, colloid chemistry, coordination chemistry and catalysis. The main purpose of this monograph is to bridge the gap between synthetic and natural polymers and to show a closer relationship between two fascinating worlds. The first chapter of the book acquaints the readers with synthetic strategy of "annealed", "quenched" and "zwitterionic" polyampholytes. Radical copolymerization, chemical modification and radiation-chemical polymerization methods are thoroughly considered. Kinetics and mechanism of formation of random, alternating, graft, di-block or tri-block sequences is discussed. The second chapter deals with behavior of polyampholytes in solutions.
The series of Conferences on the Spectroscopy of Biological Molecules aims to stimulate research and development in this area of Science. The relationship between the structure and the biological activity of such materials as proteins, lipids, and nucleic acids is fundamental. The 5th European Conference on the Spectroscopy of Biological Molecules (ECSBM) is held at the Hotel Poseidon Club, Loutraki, Greece, on 5-10 September 1993. The scientific contents are remained the same as in the past conferences. Emphasis is given to vibrational spectroscopy, mainly infrared and Raman applied to the study of structure and dynamics of proteins, nucleic acids, porphyrins, carbohydrates, membranes, etc. Most of the contributions describe molecular dynamics and excitation processes, in particular the electronic-vibrational excitations, which are studied by Fr-Raman, Fourier Transform Infrared (Fr-IR) coupled often with microscopy and chromatography. Contributions also include Fr-Raman and FT-IR instrumentation and new developments in this area, and applications in Biology and Medicine. Furthermore, there is a plenary lecture in Mass Spectrometry and its applications in biomedical analysis, and a session devoted to Nuclear Magnetic Resonance (NMR) and its application in the study of biological molecules. Several contributions are devoted to other methods, such as CD, optical absorption, fluorescence and molecular graphics simulations. This volume of ECSBM contains shon articles by the invited and contributed lectures as well as from the Poster presentations from many European and non-European countries.
Over the past decade high performance computing has demonstrated the ability to model and predict accurately a wide range of physical properties and phenomena. Many of these have had an important impact in contributing to wealth creation and improving the quality of life through the development of new products and processes with greater efficacy, efficiency or reduced harmful side effects, and in contributing to our ability to understand and describe the world around us. Following a survey ofthe U.K.'s urgent need for a supercomputingfacility for aca demic research (see next chapter), a 256-processor T3D system from Cray Research Inc. went into operation at the University of Edinburgh in the summer of 1994. The High Performance Computing Initiative, HPCI, was established in November 1994 to support and ensure the efficient and effective exploitation of the T3D (and future gen erations of HPC systems) by a number of consortia working in the "frontier" areas of computational research. The Cray T3D, now comprising 512 processors and total of 32 CB memory, represented a very significant increase in computing power, allowing simulations to move forward on a number offronts. The three-fold aims of the HPCI may be summarised as follows; (1) to seek and maintain a world class position incomputational scienceand engineering, (2) to support and promote exploitation of HPC in industry, commerce and business, and (3) to support education and training in HPC and its application.
These volumes, 9 and 10, of Fracture Mechanics of Ceramics constitute the proceedings of an international symposium on the fracture mechanics of ceramic materials held at the Japan Fine Ceramics Center, Nagoya, Japan on July 15, 16, 17, 1991. These proceedings constitute the fifth pair of volumes of a continuing series of conferences. Volumes 1 and 2 were from the 1973 symposium, volumes 3 and 4 from a 1977 symposium, and volumes 5 and 6 from a 1981 symposium all of which were held at The Pennsylvania State University. Volumes 7 and 8 are from the 1985 symposium which was held at the Virginia Polytechnic Institute and State University. The theme ofthis conference, as for the previous four, focused on the mechanical behavior ofceramic materials in terms of the characteristics of cracks, particularly the roles which they assume in the fracture processes and mechanisms. The 82 contributed papers by over 150 authors and co-authors represent the current state of that field. They address many of the theoretical and practical problems ofinterest to those scientists and engineers concerned with brittle fracture.
Foreword: Charles J. Pedersen (1904-1989), Nobel Laureate in Chemistry (1987) This issue is dedicated to the memory of the late Charles J. Pedersen in recognition of his outstanding contribution to scientific research, culminating in his discovery of crown ethers and their remarkable cation complexing properties and his receipt of the 1987 Nobel Prize in Chemistry. Charlie's origin and early years in Korea did not portend the creative work in chemistry which would characterize his later life. However, we can see in his early years the influence of his Norwegian father and Japanese mother who considered his formal education to be of utmost importance. At the age of eight, he was sent abroad to Japan for schooling, first at a convent school in Nagasaki, and two years later at a French-American preparatory school in Yokohama run by a Marianist order of Catholic priests and brothers. The latter group encouraged him to attend the order's University of Dayton in Ohio where he received a bachelors degree in chemical engineering. Charlie's academic experiences, his employment with du Pont, and the creative spark which he manifested at an early stage of his scientific career are detailed in the paper in this issue by Herman Schroeder. Schroeder had a long-time association with Charlie at du Pont as a co-worker, supervisor, and friend. His recollections provide insight into Charlie's creative mind. In addition, they make it clear that a long period of creative work preceded the accidental discovery of the first synthetic crown ether. It is important to note that Charlie's mind was well prepared to recognize the importance of his discovery. The field of macrocyclic chemistry, to a large degree, had its beginnings with Charlie's discovery. A first-person account of his discovery is given as the first paper in this issue. This account was prepared by him and was read at the 12th Symposium on Macrocyclic Chemistry in Hiroshima, Japan in 1987 by Herman Schroeder. The growth of this field since Charlie's first publication on the subject in 1967 has been enormous. This growth is evidenced in one segment of the field by the three-fold increase in the number of references in two Chemical Reviews articles on thermodynamic quantities associated with cation-macrocycle interaction authored by us in 1985 and 1991. Charlie lived to see much of this growth. He saw many of his own predictions of possible uses of crown ethers and related macrocycles realized. Recognition for Charlie came late in his career. He found it satisfying to see so many capable scientists go in so many directions as they applied his discovery to a wide range of chemical and other fields. He made seminal contributions to the broad area known today as molecular recognition. His work illustrates how one individual can make an enormous difference in science. The effect of his life and work on those of us who contributed papers for this issue and on many others is appreciated and is acknowledged by several of the authors in their individual papers. It is entirely appropriate to honor his memory with this special issue. R.M. Izatt, J.S. Bradshaw Department of Chemistry, Brigham Young University, Provo, UT 84602, U.S.A. Reprinted from Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, Volume 12, Nos. 1-4 (1992)
Approximately half of the world production of the petrochemical industry (more than 100 million tonnes) is in the form of polymers, yet it would probably surprise most people to learn how much their lifestyle depends on polymers ranging, as they do, from detergents, kitchenware and electrical appliances to furnishings and a myriad other domestic goods. Still less are they likely to be aware of the extensive part they play in engineering applications for mechanical machine components and advanced high performance aircraft. This versatility derives from the fact that polymeric materials are made up of a range of molecules of varying length, whose properties are related to molecular structure and the proportions of the chains in the mixture. For example, polypropylene is a commodity polymer which is produced in hun dreds of different grades to meet specific market requirements. This depends on the catalyst as well as the operating conditions and reactor design. A major area for growth is in substituting polymers for conventional materials such as ceramics and metals. Not only can they match these materials in terms of mechanical strength and robustness but they have very good resistance to chemical attack. Polyamides, for example, are widely used for car bumpers and new polymers are being developed for engine manifolds and covers. In 1993 there is, typically, 100 kg of various polymers used in cars and this is continually increasing, giving a net weight reduction and hence better fuel economy."
Silicon and silicon compounds have contributed decisively to the technical progress. Technical applications range from mass commodities to highly sophisticated special materials, from ceramics to polymers, from medicine to microelectronics. To keep pace with scientific and technical developments Germany and Austria have established national priority programs, strongly linked to each other as well as to some Swiss groups. At mid-term of the German program and the end of the first funding period of the Austrian program the results are summarized in this special edition of the journal Monatshefte fur Chemie/Chemical Monthly, giving an excellent overview of the current chemical (and partly physical) acitivites in the joint Austrian/German/Swiss program. The contributions cover topical and interdisciplinary developments in the following areas: * new phenomena in compounds with Si-Si bonds: transitions between molecular compounds and solids, cyclosilanes, polysilanes, silicides, amorphous hydrogenated silicon, * novel silicon-oxygen systems: functionalized sol-gel compounds, spherosiloxanes, siloxene, * compounds with low- and high-coordinated silicon, * new spectroscopic and analytical techniques for the characterization of molecular and polymeric silicon compounds.
Polymer composites represent materials of great and of continuously growing importance. Their potential for application appears to be limitless. They have been the subject of numerous studies both at academic and industrial levels. Much progress has been made in the incisive formulation of composites; sophisticated methods of property evaluation have been developed in the past decade and many, largely empirical solutions have been proposed to resolve the problem of their long-term performance under typical conditions of use (i. e. the use of silane or titane coupling agents to enhance adhesion within composite materials). Assuredly one of the most essential factors in the performance of these systems is the condition of the interface and interphase among the constituents of a given system. It has become clear that it is the interface/interphase, and the interactions which take place in this part of a system, which determine to a significant degree the initial properties of the material. In order to achieve leadership in the formulation and application of polymer composites, it is evident that in depth understanding of interfacial and interphase phenomena becomes a prerequisite.
For several decades, polymer science has sought to rationalize the mechanical and thermodynamic properties of polymer networks largely within the framework of statistical thermodynamics. Much of this effort has been directed toward the rubbery rather than the glassy state. It is generally assumed that networks possess an av erage composition to which average properties may be assigned; from such a continuum view, a powerful analysis of such properties as modulus, swelling, birefringence and thermoelasticity has emerged. In the years following the rise of polymer characterization (the late 40's and early 50's), many scientists began to study ap parent relations between the properties of linear polymer molecules and the networks obtainable therefrom. This search was also stimu lated by the wide range of applications of polymer networks in com mercial elastomers, thermosets and coatings. Frequently, these data were confidently matched with curves obtained from statisti cally describable models of networks of ghost chains, uniformly distributed in space. More recently, it has become apparent that polymer chains in networks are not as ideal as assumed in the formulation of statis tical models, and there has been a shift in emphasis towards the less than ideal, perturbed and possibly inhomogeneous networks which are more frequently encountered in practice. The continuum approach, however, had to be developed before inhomogeneous systems could be described; the present volume, therefore, contains both views."
Polymers continue to play an ever increasing role in the modern world. In fact it is quite inconceivable to most people that we could ever have existed of the increased volume and variety of materials without them. As a result currently available, and the diversity of their application, characterisation has become an essential requirement of industrial and academic laboratories in volved with polymeric materials. On the one hand requirements may come from polymer specialists involved in the design and synthesis of new materials who require a detailed understanding of the relationship between the precise molecular architecture and the properties of the polymer in order to improve its capabilities and range of applications. On the other hand, many analysts who are not polymer specialists are faced with the problems of analysing and testing a wide range of polymeric materials for quality control or material specification purposes. We hope this book will be a useful reference for all scientists and techno or industrial laboratories, logists involved with polymers, whether in academic and irrespective of their scientific discipline. We have attempted to include in one volume all of the most important techniques. Obviously it is not possible to do this in any great depth but we have encouraged the use of specific examples to illustrate the range of possibilities. In addition numerous references are given to more detailed texts on specific subjects, to direct the reader where appropriate. The book is divided into II chapters."
A comprehensive and up to date survey of the science and technology of polymeric dispersions. The book discusses the kinetics and mechanisms of polymerization in dispersed media, examines the processes controlling particle morphology, presents both off-line and on-line methods for the characterization of polymer colloids, considers reactor engineering and control, and covers a wide variety of applications, such as latex paint formulations, encapsulation of inorganic particles, reactive latexes, adhesives, paper coating, and biomedical and pharmaceutical applications. Audience: A valuable resource for scientists and engineers, academic and industrial, who are involved in the manufacture or application of polymeric dispersions.
Assessing the quality of textiles using textile microscopy remains one of the important instruments for permanent process improvement in the fiber, textile and apparel industries. The degree of international interlinking in the textile producing and finishing industries and their markets demands dearly defined and reproducible methods of detecting damage or defects at all process stages. This book -Quality Assessment of Textiles -Damage Detection by Microsco- py - has in the meantime established itself so well as "the Mahall" in research institute laboratories investigating defects, in universities and colleges, in the training of textile chemists and technologists, and in the industry and the retail trade, that it has become necessary to bring out a new edition. This edition has been revised and supplemented by Mr. Mahall and his succes- sor Ms. Irmhild Goebel and her staff. Cognis, as the successor organization continuing the textile business of the for- mer Textile Technology department of Henkel, is pleased to make this new edi- tion available to specialists, to students and to any other interested readers. June 2002 Dr. U. Kloubert (Cognis Deutschland GmbH & Co. KG) Prof E. Finnimore (Fachhochschule Hof, Germany) Foreword to the First Edition Quality is the decisive criterion by which textile industry is measured in the international competition. Today this is particularly true.
Supramolecular stereochemistry is a topic with enormous breadth, and this book brings together experts in polymer chemistry, bioorganic chemistry, crystallography, materials science, dendrimer science, nanochemistry, conformational analysis, molecular recognition chemistry, and topological stereochemistry. Contains 19 plenary and 12 poster contributions.
This volume chronicles the proceedings of the Third Symposium on Metallized Plastics: Fundamental and Applied Aspects held under the auspices of the Dielectric Science and Technology Division of the Electrochemical Society in Phoenix, Arizona, October 13-18, 1991. This series of symposia to address the subject of metallized plastics was initiated in 1988 and the premier symposium was held in Chicago, October 10-12, 1988, followed by the second event in Montreal, Canada, May 7-10, 1990. The rroceedings of these two symposia have been properly documented ,2. The third symposium was a huge success like the previous two events, and all this is testimonial to the brisk interest and high tempo of R&D activity in the fie14 of metallized plastics. This further bolsters our earlier thinking that there was a conspicuous need to hold symposia on this topic on a regular basis and the fourth is planned for May 16-21, 1993 in Honolulu, Hawaii. The study of metallized plastics constitutes an important human endeavor l and as pointed out earlier there are myriad applications of metallized plastics ranging from very commonplace to exotic. Also a survey of the recent literature will reveal that both the fundamental and applied aspects of metallized plastics are being pursued with great vigor.
Taking a critical approach toward novel colloid systems and phenomena, this series provides both the historical development and a digest of recent advances. The current volume focuses on solutions containing surfactants and polymers, with special emphasis on micelle formation and microemulsions.
Few polymer chemists have much familiarity with recent developments in the synthesis of speciality polymers. This volume provides up-to-date reviews of areas of current interest and is directed at polymer chemists in the academic world and industry.
Oxireductases in the Enzymatic Synthesis of Water-Soluble
Conducting Polymers, by E. Ochoteco and D. Mecerreyes Transferases in Polymer Chemistry, by J. van der Vlist and K.
Loos Hydrolases Part I: Enzyme Mechanism, Selectivity and Control in
the Synthesis of Well-Defined Polymers, by M.A.J. Veld and A.R.A.
Palmans Hydrolases in Polymer Chemistry: Chemoenzymatic Approaches to
Polymeric Materials, by A. Heise and A.R.A. Palmans Exploiting Biocatalysis in the Synthesis of Supramolecular Polymers, by S. Roy and R. V. Ulijn
Proceedings of the European Membrane Society XVI Annual Summer School on Integration of Membrane Processes into Bioconversions, held August 22-27, 1999, in Veszprem, Hungary. The purpose of this book is to give an overview of the current situation of membrane separation processes in the field of bioengineering and also to describe how their joint application possibilities can be used in both laboratory and industrial scale applications. In commercial applications, focus is centered on the fields of food industry, chemical/fine chemical industry, and environmental protection. Most of the European experts in the interdisciplinary fields of membrane processes and bioconversions have contributed to the chapters in this work, making it the most up-to-date volume currently available.
In recent years biocompatible polymers for injuries and wounds have seen advances and innovations that have outpaced the growing field's literature. In this book Dr. Jan W. Gooch, a National Research Council Research Associateship Award recipient, reveals how innovative polymer technology can be applied to the common combat and trauma wounds associated with damaged soft tissue and bleeding. The scope of his investigation spans four distinct devices for wounds, liquid and particulate barrier dressings for soft tissue wounds, sutureless tissue adhesives, antibacterial nanoemulsions, one-hand operated and automatic tourniquets for the battlefield.
The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and alkyne polymerization. The topics of the course were: mechanism of ROMP reactions/ new catalysts for ROMP/ new products by ROMP/ new catalysts for ADMET/ new products by ADMETI degradation of polymer by metathesis reactions/ alkyne polymerization and metathesis/ industrial application of metathesis reactions. The Advanced Study Institute was generously sponsored by the Scientific Affairs Division of NATO and the editor gratefully acknowledges this sponsorship. We also thank the Members of the Local Organizing Committee for their engagement on a successful NATO-AS ."
Advanced composite materials have been a major research focus for the past forty years. As a reinforcement for conventional materials including glass, ceramics and polymers, carbon has proved to be the most successful. Carbon gives these materials flexibility so that they may be produced in bulk form with a wide variety of properties. Whereas carbon/carbon composites are the most effective materials in extreme temperature conditions. Application ranges from brakes to missile nose cones. Carbon Reinforcements and Carbon/Carbon Composites gives the present state on this subject in comprehensive form, as well as projections for other "High Tech" materials and their application. |
![]() ![]() You may like...
Eight Days In July - Inside The Zuma…
Qaanitah Hunter, Kaveel Singh, …
Paperback
![]()
Research Anthology on Recent Trends…
Information Reso Management Association
Hardcover
R10,621
Discovery Miles 106 210
Vusi - Business & Life Lessons From a…
Vusi Thembekwayo
Paperback
![]()
Your First Year Of Varsity - A Survival…
Shelagh Foster, Lehlohonolo Mofokeng
Paperback
R382
Discovery Miles 3 820
|