![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power generation & distribution
This book highlights state-of-the-art research on renewable energy integration technology and suitable and efficient power generation, discussing smart grids, renewable energy grid integration, prediction control models, and econometric models for predicting the global solar radiation and factors that affect solar radiation, performance evaluation of photovoltaic systems, and improved energy consumption prediction models. It discusses several methods, algorithms, environmental data-based performance analyses, and experimental results to help readers gain a detailed understanding of the pros and cons of technologies in this rapidly growing area. Accordingly, it offers a valuable resource for students and researchers working on renewable energy optimization models.
This contributed volume contains the conference proceedings of the Simulation of Urban Mobility (SUMO) conference 2015, Berlin. The included papers cover a wide range of topics in traffic planning and simulation, including intermodal simulation, intermodal transport, vehicular communication, modeling urban mobility, open data as well as autonomous driving. The target audience primarily comprises researchers and experts in the field of mobility research, but the book may also be beneficial for graduate students.
This book addresses the challenges of planning sustainable freight transport systems (road and air) in a time when the industry faces increasing pressure from environmental limits, climate change, carbon emission targets, bottlenecks in oil supply, infrastructure shortages and urban congestion. The author examines sustainable freight transport over the last 45 years on three continents, and includes developments on transport economics, logistics and transport geography as well as environmental economics. Readers will gain valuable insight on a number of practices and methodologies that will assist in making their systems more sustainable with fewer negative environmental effects at both the local and global level.
This book is concerned with the development of design techniques for controlling motion of mechanical systems which are employed to execute certain tasks acting collaboratively. The book introduces unified control design procedure for functionally related systems. The controllers for many different tasks in motion control can be successfully designed by applying the proposed simple procedure. The book gives an overview of the control methods appearing in the motion control area and the detailed design procedures for the class of systems that are required to execute certain task together. Tasks can generally be divided in their components, denoted as functions in the book. It is shown how dynamics of those tasks can be described. Based on the presented description, several control methods were discussed. Applicability of the introduced control design approach was demonstrated in subsequent chapters for various tasks.
This book consolidates some of the most promising advanced smart grid functionalities and provides a comprehensive set of guidelines for their implementation/evaluation using DIgSILENT Power Factory. It includes specific aspects of modeling, simulation and analysis, for example wide-area monitoring, visualization and control, dynamic capability rating, real-time load measurement and management, interfaces and co-simulation for modeling and simulation of hybrid systems. It also presents key advanced features of modeling and automation of calculations using PowerFactory, such as the use of domain-specific (DSL) and DIgSILENT Programming (DPL) languages, and utilizes a variety of methodologies including theoretical explanations, practical examples and guidelines. Providing a concise compilation of significant outcomes by experienced users and developers of this program, it is a valuable resource for postgraduate students and engineers working in power-system operation and planning.
This book presents emerging technology management approaches and applied cases from leading infrastructure sectors such as energy, healthcare, transportation and education. Featuring timely topics such as fracking technology, electric cars, Google's eco-friendly mobile technology and Amazon Prime Air, the volume's contributions explore the current management challenges that have resulted from the development of new technologies, and present tools, applications and frameworks that can be utilized to overcome these challenges. Emerging technologies make us rethink how our infrastructure will look in the future. Solar and wind generation, for example, have already changed the dynamics of the power sector. While they have helped to reduce the use of fossil fuels, they have created management complications due to their intermittent natures. Meanwhile, information technologies have changed how we manage healthcare, making it safer and more accessible, but not without implications for cost and administration. Autonomous cars are around the corner. On-line education is no longer a myth but still a largely unfulfilled opportunity. Digitization of car ownership is achievable thanks to emerging business models leveraging new communication technologies. The major challenge is how to evaluate the relative costs and benefits of these technologies. This book offers insights from both researchers and industry practitioners to address this challenge and anticipate the impact of new technologies on infrastructure now and in the future.
This book provides a review of all types of silicon solar cells. The scope includes monocrocrystalline Si solar cells, polycrystalline and amorphous thin-film silicon solar cells, and tandem solar cells. Production, treatment and development of these devices are reviewed. Limitations of these devices, design optimization, testing and fabrication methods are covered. In addition, current status and future prospects for the further development of silicon solar cells are addressed. Special emphasis is given to methods of attaining high efficiency and thereby cost-effective solar power. The aim of the book is to provide the reader with a complete overview about the recent advances in the structure and technology of all generations of silicon solar cells.
This book explores mobilities as a key to understanding the practices that both frame and generate contemporary everyday life in the urban context. At the same time, it investigates the challenges arising from the interpretation of mobility as a socio-spatial phenomenon both in the social sciences and in urban studies. Leading sociologists, economists, urban planners and architects address the ways in which spatial mobilities contribute to producing diversified uses of the city and describe forms and rhythms of different life practices, including unexpected uses and conflicts. The individual sections of the book focus on the role of mobility in transforming contemporary cities; the consequences of interpreting mobility as a socio-spatial phenomenon for urban projects and policies; the conflicts and inequalities generated by the co-presence of different populations due to mobility and by the interests gathered around major mobility projects; and the use of new data and mapping of mobilities to enhance comprehension of cities. The theoretical discussion is complemented by references to practical experiences, helping readers gain a broader understanding of mobilities in relation to the capacity to analyze, plan and design contemporary cities.
"Introduction to Skin Biothermomechanics and Thermal Pain" introduces the study of coupled bio-thermo-mechanical and neural behavior of skin tissue in response to thermal and mechanical loads. The research in this book focuses on the theoretical modeling and experimental investigation of heated skin tissue in order to provide a predictive framework for thermal therapies of diseased tissue in clinics. Furthermore, by developing solution tools, it focuses on changes in treatment parameters leading to more effective therapies. The book is intended for researchers and scientists in Bioengineering, Heat Transfer, Mechanics, Biology and Neurophysiology, as well as clinicians. Dr. Feng Xu is a research fellow at Harvard Medical School, Boston, MA, USA. Dr. Tianjian Lu is a professor at the School of Aerospace, Xi'an Jiaotong University, Xi'an, China. Dr. Xu and Dr. Lu are also affiliated with Biomedical Engineering and Biomechanics Center at Xi'an Jiaotong University, Xi'an, China.
This book presents a universal mass-production micro/nano integrated fabrication technology, which can be used to realize micro/nano hierarchical structures on Si-based materials and flexible polymeric materials. This fabrication technology has been systematically investigated by using experimental measurements, mechanism analyses, theoretical simulations and so on. Three common materials (i.e., silicon, PDMS and Parylene-C) with micro/nano hierarchical structures have been successfully fabricated, which also show several attractive properties. Furthermore, this book introduces this fabrication technology into microenergy field, and proposes several high-performance nanogenerators, of which practical applications have also been studied in commercial electronic device and biomedical microsystem.
This book reports on the most recent applications of processes with a particular focus on the source and the properties of biogas and on the characteristics of the fuel cells (FCs). It describes adsorbing materials of potential interest are reviewed and the preparation methods and treatments employed to improve the adsorption properties as well as the stability and regenerability. The characterization of the chemical and physical properties involved in these processes is examined in particular detail. The book also covers aspects that concern the development of the adsorption apparatus with particular attention on the target of low residual concentration and high selectivity.High temperature FCs, such as molten carbonates (MCFCs) or solid oxides (SOFCs), are efficient, with a low environmental impact, and they can use a wide variety of fuels, such as biogas. The presence of some poisonous compounds such as sulphides, halides, and siloxanes can react with electrode catalysts and electrolyte, leading to the degradation and short lifetime of the cell. The treatment of raw biogas to obtain a FC-compatible fuel is mainly based on adsorption processes on suitable materials.
This book proposes the concept of a multi-layer pavement system to fulfill the blast resistance requirement for pavement design. It also presents a damage pattern chart for multi-layer pavement design and rapid repair after blast load. Such a multi-layer system consists of three layers including asphalt concrete (AC) reinforced with Geogrid (GST) at the top, a high-strength concrete (HSC) layer in the middle, and engineered cementitious composites (ECC) at the bottom. A series of large-scale laboratory impact tests were carried out to prove the usefulness of this concept and show its advantages over other conventional pavement system. Furthermore, field blast tests were conducted to show the actual behavior of this multi-layer pavement system subjected to blast load under real-world conditions.
This book presents an integrated approach to sustainably fulfilling energy requirements, considering various energy-usage sectors and applicable technologies in those sectors. It discusses smart cities, focusing on the design of urban transport systems and sources of energy for mobility. It also shares thoughts on individual consumption for ensuring the sustainability of energy resources and technologies for emission reductions for both mobility and stationary applications. For the latter, it examines case studies related to energy consumption in the manufacturing sector as well as domestic energy requirements. In addition it explores various distribution and policy aspects related to the power sector and sources of energy such as coal and biomass. This book will serve as a valuable resource for researchers, practitioners, and policymakers alike.
This book presents numerical and experimental research in the field of wind energy exploitation in urban environments. It comprises a selection of the best papers from the international colloquium "Research and Innovation on Wind Energy Exploitation in Urban Environment" (TUrbWind), held in Riva del Garda, Italy in June 2017. The book includes contributions from different research fields in urban wind resources, wind energy conversion systems, and urban integration, mainly focusing on the following topics: * concepts for urban and open landscape micro wind turbines, * integration of micro wind turbines in existing structures, * built-environment and high-turbulence sites' impacts on urban wind turbines, * measuring and modeling wind resource in built environments, * rotor performance and wake features of micro wind turbines. It is a valuable resource for researchers and practitioners interested in the integration of wind energy systems and turbines in urban areas.
Control Systems: Classical, Modern, and AI-Based Approaches provides a broad and comprehensive study of the principles, mathematics, and applications for those studying basic control in mechanical, electrical, aerospace, and other engineering disciplines. The text builds a strong mathematical foundation of control theory of linear, nonlinear, optimal, model predictive, robust, digital, and adaptive control systems, and it addresses applications in several emerging areas, such as aircraft, electro-mechanical, and some nonengineering systems: DC motor control, steel beam thickness control, drum boiler, motional control system, chemical reactor, head-disk assembly, pitch control of an aircraft, yaw-damper control, helicopter control, and tidal power control. Decentralized control, game-theoretic control, and control of hybrid systems are discussed. Also, control systems based on artificial neural networks, fuzzy logic, and genetic algorithms, termed as AI-based systems are studied and analyzed with applications such as auto-landing aircraft, industrial process control, active suspension system, fuzzy gain scheduling, PID control, and adaptive neuro control. Numerical coverage with MATLAB (R) is integrated, and numerous examples and exercises are included for each chapter. Associated MATLAB (R) code will be made available.
In order to build a sustainable transport system for people and goods that meets the needs of all users, a truly integrated and seamless approach is needed, and the full potential of transformative technologies has to be exploited. This can only be achieved if user-centeredness, cross-modality and technology transfer become the paradigm of shaping future transport. Mobility4EU is a project funded by the European Commission that focusses on these topics and is working on delivering an action plan towards a user-centric and cross-modal European transport system in 2030. The authors of this contributed volume are dedicated scholars and practitioners connected to Mobility4EU either as partners or external contributors. Their contributions focus on understanding user needs and report on technologies and approaches that support the tailoring of a user-centered cross-modal transport system for passengers and freight on long distances and in the urban context.
The proceedings collect the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation. The topics cover novel traction drive technologies of rail transportation, safety technology of rail transportation system, rail transportation information technology, rail transportation operational management technology, rail transportation cutting-edge theory and technology etc. The proceedings can be a valuable reference work for researchers and graduate students working in rail transportation, electrical engineering and information technologies.
The proceedings collect the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation. The topics cover novel traction drive technologies of rail transportation, safety technology of rail transportation system, rail transportation information technology, rail transportation operational management technology, rail transportation cutting-edge theory and technology etc. The proceedings can be a valuable reference work for researchers and graduate students working in rail transportation, electrical engineering and information technologies.
This book systematically reviews the history of lead-free piezoelectric materials, including the latest research. It also addresses a number of important issues, such as new types of materials prepared in a multitude of sizes, structural and physical properties, and potential applications for high-performance devices. Further, it examines in detail the state of the art in lead-free piezoelectric materials, focusing on the pathways to modify different structures and achieve enhanced physical properties and new functional behavior. Lastly, it discusses the prospects for potential future developments in lead-free piezoelectric materials across disciplines and for multifunctional applications. Given its breadth of coverage, the book offers a comprehensive resource for graduate students, academic researchers, development scientists, materials producers, device designers and applications engineers who are working on or are interested in advanced lead-free piezoelectric materials.
This thesis proposes a new raft-type wave-powered desalination device that can convert wave power into hydraulic energy and use reverse osmosis (RO) to directly desalinate seawater. Both analytical and numerical methods are used to study the hydrodynamic characteristics of the device. Further, the thesis investigates the maximum power extraction and multiple parameter effects on power absorption and averaged permeate water flux. Lastly, it proposes and assesses two power extraction enhancing strategies. The thesis offers a valuable and important reference guide to ocean-wave-and-structure interaction and wave-powered seawater desalination for scientists and engineers alike.
This book focuses on the systematic design of architectures, parameters and control of typical hybrid propulsion systems for wheeled and tracked vehicles based on a combination of theoretical research and engineering practice. Adopting a mechatronic system dynamics perspective, principles and methods from the fields of optimal control and system optimization are applied in order to analyze the hybrid propulsion configuration and controller design. Case investigations for typical hybrid propulsion systems of wheeled and tracked ground vehicles are also provided.
This book reviews and examines how power system low-frequency power oscillations and sub-synchronous oscillations may be affected by grid connection of wind power generation. Grid connection of wind power generation affects the power system small-signal stability and has been one of the most actively pursued research subjects in power systems and power electronics engineering in the last ten years. This book is the first of its kind to cover the impact of wind power generation on power system low-frequency oscillations and sub-synchronous oscillations. It begins with a comprehensive overview of the subject and progresses to modeling of power systems and introduces the application of conventional methods, including damping torque analysis, modal analysis and frequency-domain analysis, presented with detailed examples, making it useful for researchers and engineers worldwide.
This volume discusses how small bioreactors can produce useful biogas and compost from biodegradable waste. The authors identify which biodegradable wastes are optimal for small bioreactors, and how these choices can be used to increase bioreactor productivity. Additionally, readers will learn about how the amount and composition of biogas is estimated, the concentration of biodegradable waste that needs to be supplied to a bioreactor, the development of small bioreactors including the ratio of cost to the obtained benefits, and the nature of biodegradable wastes generated by both small farms and large food industry enterprises. The beginning chapters explain what biodegradable waste is, show how to predict how much waste an enterprise will produce, and elaborate the characteristics of the biogas which is generated from biodegradable waste in small bioreactors. Then the book discusses the types of small bioreactors and how to select the optimal bioreactor for a given case. Bioreactor performance is analyzed on both an economical and production efficiency basis, with experimental results provided on the quantity and quality of the biogas produced. The final chapters address how small bioreactors can be incorporated into small biogas plants, and the potential use of small bioreactors in countries with high demand for alternative energy using the case of Lithuania. The audience for this work includes specialists in biodegradable waste management and utilization enterprises, designers, and academics, researchers and students engaged in environmental engineering.
The Earth has limited resources while the resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial bodies and their resources. This book investigates Outer Solar Systems and their prospective energy and material resources. It presents past missions and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great resource of condensed information for specialists interested in current and impending Outer Solar Systems related activities and a good starting point for space researchers, inventors, technologists and potential investors. |
You may like...
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
Selected Papers from MEDPOWER 2018-the…
Igor Kuzle, Tomislav Capuder, …
Hardcover
Model Predictive Control for Microgrids…
Jiefeng Hu, Josep Guerrero, …
Hardcover
Mechanical Design of Piezoelectric…
Qing-Song Xu, Lap Mou Tam
Paperback
R3,013
Discovery Miles 30 130
|