![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power generation & distribution
This book provides specific topics intending to contribute to an improved knowledge on Technology Evaluation and Selection in a Life Cycle Perspectives. Although each chapter will present possible approaches and solutions, there are no recipes for success. Each reader will find his/her balance in applying the different topics to his/her own specific situation. Case studies presented throughout will help in deciding what fits best to each situation, but most of all any ultimate success will come out of the interplay between the available solutions and the specific problem or opportunity the reader is faced with.
The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials' atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.
This textbook on network economics provides essential microeconomic instruments for the analysis of network sectors like telecommunications, transport or energy. Network-specific characteristics emerge both on the cost side and benefit side, requiring network providers to develop innovative entrepreneurial competition strategies for costing, pricing, and investment. From a competition policy perspective, a number of interesting questions arise: In which parts of networks is competition functional? In contrast, where is an abuse of market power to be expected? What is the division of labor between cartel authorities and regulatory agencies? The book develops an analytical framework for all network industries which allows readers to study entrepreneurial strategies as well as regulation and competition policies for network industries.
This book explains the engineering required to bring geothermal resources into use. The book covers specifically engineering aspects that are unique to geothermal engineering, such as measurements in wells and their interpretation, transport of near-boiling water through long pipelines, turbines driven by fluids other than steam, and project economics. The explanations are reinforced by drawing comparisons with other energy industries.
Intelligent Transportation Systems: Functional Design for Economical and Efficient Traffic Management provides practical guidance on the efficient use of resources in the design of ITS. The author explains how functional design alternatives can meet project objectives and requirements with optimal cost effectiveness and clarifies how transportation planning and traffic diversion principles relate to functional ITS device selections and equipment locations. Methodologies for translating objectives to functional device types, determining device deployment densities and determining the best placement of CCTV cameras and message signs are provided, as are models for evaluating the benefits of design alternatives based on traffic conditions. Readers will learn how to reduce recurrent congestion, improve incident clearance time in non-recurrent congestion, provide real-time incident information to motorists, and leverage transportation management center data for lane control through important new active transportation and demand management (ATDM) methods. Finally, the author examines exciting developments in connected vehicle technologies, exploring their potential to greatly improve safety, mobility and energy efficiency. This resource will greatly benefit all ITS designers and managers and is of pivotal importance for operating agencies performing evaluations to justify operational funding and system expansions.
The work demonstrates a techno-economic model of power generation for the cost-effective integration of renewable energy sources, with the goal of reducing greenhouse gas emissions in Canada. The methodological approach outlined by the author is based on periodic simulation of price variations. The result demonstrates that a 10% transition to renewable energy generation is possible, practical and affordable when supported by an effective policy framework that does not need to introduce a feed-in tariff or loan-based financial mode.
This book presents seven chapters examining selected noise, vibration and harshness (NVH) topics that are highly relevant for automotive vehicle development. These include applications following the major trends toward increased passenger comfort, vehicle electrification and lightweight design. The authors of the seven chapters, all of which are experts from the automotive industry and academia, present the foremost challenges and potential solutions in this demanding field. Among others, applications for sound optimization in downsized engines, noise optimization in electric powertrains, weight reduction options for exhaust systems, porous materials description, and the vibro-acoustic analysis of geared systems are discussed.
Based on the simulations developed in research groups over the past years, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines provides a compilation of the main ingredients necessary to build up a quasi-dimensional computer simulation scheme. Quasi-dimensional computer simulation of spark ignition engines is a powerful but affordable tool which obtains realistic estimations of a wide variety of variables for a simulated engine keeping insight the basic physical and chemical processes involved in the real evolution of an automotive engine. With low computational costs, it can optimize the design and operation of spark ignition engines as well as it allows to analyze cycle-to-cycle fluctuations. Including details about the structure of a complete simulation scheme, information about what kind of information can be obtained, and comparisons of the simulation results with experiments, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines offers a thorough guide of this technique. Advanced undergraduates and postgraduates as well as researchers in government and industry in all areas related to applied physics and mechanical and automotive engineering can apply these tools to simulate cyclic variability, potentially leading to new design and control alternatives for lowering emissions and expanding the actual operation limits of spark ignition engines
Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group "Underground Storage of CO2 and Energy", is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3rd Sino-German conference on the theme "Clean Energy Systems in the Subsurface: Production, Storage and Conversion". This volume is a collection of diverse quality scientific works from different perspectives elucidating on the current developments in CO2 geologic sequestration research to reduce greenhouse emissions including measures to monitor surface leakage, groundwater quality and the integrity of caprock, while ensuring a sufficient supply of clean energy. The contributions herein have been structured into 6 major thematic research themes: Integrated Energy and Environmental Utilization of Geo-reservoirs: Law, Risk Management & Monitoring CO2 for Enhanced Gas and Oil Recovery, Coal Bedded Methane and Geothermal Systems Trapping Mechanisms and Multi-Barrier Sealing Systems for Long-Term CO2 Storage Coupled THMC-Processes and Numerical Modelling Rock Mechanical Behaviour Considering Cyclic Loading, Dilatancy, Damage, Self-sealing and Healing Underground Storage and Supply of Energy "Clean energy systems in the subsurface" will be invaluable to researchers, scientists and experts in both academia and industry trying to find a long lasting solution to the problems of global climate change, energy security and sustainability.
Thermo-fluid Dynamics of Two-Phase Flow, Second Edition is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of particular significance for those working in the field of computational fluid dynamics, new equations and coverage of 1 dimensional drift flux models and a new chapter on porous media formulation.
The 21st century has seen shipping evolve from a fundamental transport industry into an asset which is at the mercy of speculative flows and business cycles. This structural shift has a number of important ramifications for the business of shipping as well as for investment strategy. This ground breaking text develops a new macroeconomic approach to maritime economics, with an emphasis on the individual shipping markets and their interdependence, in order to arm the reader with a more comprehensive understanding of the way modern shipping markets function and enable the making of critical decisions such as when to buy and sell ships and when to be in the spot or the period market.Karakitsos and Varnavides bring together their wealth of experience in shipping, finance and academia to make a number of key contributions to the study of maritime economics including: -Viewing Freight rates as asset prices determined as a bargaining game between charterers and owners who form expectations of future demand and supply to create a dynamic analysis of freight rates.-Theorising ships as assets, where prices are determined by demand and supply. -Explaining how the demand for vessels is derived as a dynamic problem of fleet capacity expansion.-Integrating the supply and the expectations approaches to shipping cycles.-Explaining how shipping cycles are caused by business cycles and expectations in demand by integrating maritime economics with macroeconomics.Maritime Economics: A Macroeconomic Approach is divided into three distinct parts; Part I analyses the micro-foundations of maritime economics, by deriving the demand and supply functions in the freight (spot and period), shipyard, second-hand and scrap markets. Part II reviews the efficiency of shipping markets and the theory of business and shipping cycles. Part III analyses the financialisation of shipping markets, the constraints of ship finance, the interaction between business and shipping cycles, and offers a case study of how decisions should be taken.This key text is indispensable reading for advanced undergraduate students studying maritime economics or shipping degrees as well as for professionals working in the shipping industry or in the financial sector.
Oil is the lifeblood of modern industrial economies. Petroleum powers virtually all motorized transport, which in turn enables most economic activities and provides mobility for citizens. But oil is a finite resource that is steadily depleting. In the past decade, the phenomenon of global peak oil - the fact that annual world oil production must at some point reach a maximum and then decline - has emerged as one of the twenty-first century's greatest challenges. South Africa imports over two-thirds of its petroleum fuels, and history has shown that oil price shocks generally translate into a weakening currency, rising consumer prices, increasing joblessness and a slow-down in economic activity. This book examines the implications of peak oil for socioeconomic welfare in South Africa and proposes a wide range of strategies and policies for mitigating and adapting to the likely impacts. It contains a wealth of data in tables and figures that illustrate South Africa's oil dependencies and vulnerabilities to oil shocks. The material is presented from a systems perspective and is organized in key thematic areas including energy, transport, agriculture, macro-economy and society. The study highlights the risks, uncertainties and difficult choices South Africa faces if it is to tackle its oil addiction, and thereby serves as an example for researchers, planners and policy-makers in the developing world who will sooner or later confront similar challenges. This case study brings a fresh southern perspective to an issue of global importance, and shows how the era of flattening and then declining global oil supplies may be a pivotal period in which either the project of industrialization progressively runs out of steam, or societies are able to undertake a proactive transition to a more sustainable future.
The modern financial system was developed to support the rapid economic growth that took off about 200 years ago with the phenomenal amounts of cheap energy made available through the exploitation of fossil fuels. As a result, its viability is completely dependent upon the continuation of that growth. Unfortunately, the more recent fossil fuel discoveries, especially for oil, have tended to have lower production levels than earlier ones. In addition, greater amounts of energy are required to extract the fossil fuels leading to less net energy available for society. The Energy Return On Investment (EROI) for oil has fallen from 30:1 in the 1970's to 10:1 today. Thus, newer energy finds produce lower extraction rates and more of the energy provided is offset by the energy used in the extraction processes. The result has been economic stagnation or even contraction, with growth in China and India etc. only possible due to the extensive use of local coal reserves, and recession-induced drops in OECD country energy use. Renewable sources of energy will not be able to expand fast enough to replace the 87% of energy supplies provided by fossil fuels, and apart from hydro and wind, tend to have very low EROI rates. They are also critically dependent upon the cheap energy infrastructure provided by fossil fuels. The phenomenal amounts of path-dependent energy infrastructure will also greatly inhibit any move away from fossil fuels. Without continued economic growth there will not be the extra output to fund loan interest payments, nor the revenue and profit growth to support share price/earnings multiples. The financial system acts as a time machine, creating asset prices based upon perceptions of the future. As an increasing percentage of investors come to accept the future reality of at best, financial asset prices will fall to reflect a realistic future. The resulting crash will remove the underpinnings of the banking, brokerage, mutual fund, pension fund, and insurance industries. The comfortable futures of many will be shown to have been based upon a mirage of future growth that will not take place. With the financial system acting as the critical coordination system of the global economy, its crash will also intensify economic problems. Written by a retired financial industry executive with over 25 years of experience, this book describes how the crisis will affect different regions and industries to help identify the career and investment choices which may provide a relative safe harbour.
The utilization of sensors, communications, and computer technologies to create greater efficiency in the generation, transmission, distribution, and consumption of electricity will enable better management of the electric power system. As the use of smart grid technologies grows, utilities will be able to automate meter reading and billing and consumers will be more aware of their energy usage and the associated costs. The results will require utilities and their suppliers to develop new business models, strategies, and processes. With an emphasis on reducing costs and improving return on investment (ROI) for utilities, Smart Grids: Clouds, Communications, Open Source, and Automation explores the design and implementation of smart grid technologies, considering the benefits to consumers as well as businesses. Focusing on industrial applications, the text:
The electric power grid is in the early stages of a sea of change. Nobody knows which business models will survive, but companies heeding the lessons found in Smart Grids: Clouds, Communications, Open Source, and Automation might just increase their chances for success.
This book illustrates basic principles, along with the development of the advanced algorithms, to realize smart robotic systems. It speaks to strategies by which a robot (manipulators, mobile robot, quadrotor) can learn its own kinematics and dynamics from data. In this context, two major issues have been dealt with; namely, stability of the systems and experimental validations. Learning algorithms and techniques as covered in this book easily extend to other robotic systems as well. The book contains MATLAB- based examples and c-codes under robot operating systems (ROS) for experimental validation so that readers can replicate these algorithms in robotics platforms.
Small Hydroelectric Engineering Practice is a comprehensive reference book covering all aspects of identifying, building, and operating hydroelectric schemes between 500 kW and 50 MW. In this range of outputs there are many options for all aspects of the scheme and it is very important that the best options are chosen. As small hydroelectric schemes are usually built against a limited budget it is extremely important that the concept design is optimum and every component is designed to maximise the benefi t and minimise the cost. As operating costs are often a high proportion of the income it is very important to make sure that everything is designed to be simple, reliable and long lasting. The book is based on the experience gained over 45 years on the overall and detailed design, construction and commissioning of more than 30 small hydropower schemes. It includes contributions from experts in the field of intakes, water diversion structures, geology, canals, painting and other aspects of hydropower development. It is intensely practical with many drawings and photographs of schemes designed and commissioned by Leyland Consultants and others. There are also sections on preparing specifi cations, tender assessment and operation and maintenance. The book includes a CD with spreadsheet programs for analysing aspects of small hydropower development and many arrangement drawings and detail designs for gates, penstocks, electrical systems and control systems. Typical specifi cations for generating plant are also included. The spreadsheets will be useful during the feasibility stage and the drawings will enable designers to scale the designs as needed for their own projects. Consultants, developers, designers, builders and operators of small hydroelectric schemes will find this book invaluable..
Hydrogen Fuel Cells for Road Vehicles addresses the main issues related to the application of hydrogen fuel cell technology in the road transportation sector. A preliminary treatment is given on fuel resources and atmospheric pollution concerns which are closely related to the current technology (internal combustion engine) used for moving people and goods. The authors deal, in particular, with the problems that can hinder a widespread hydrogen market (production, storage and distribution), as well as giving an analysis of fuel cell technologies available for utilization of this energy carrier in the automotive field. Hydrogen Fuel Cells for Road Vehicles also examines the concerns faced during the design and realization of a PEM fuel cell system with optimal size and efficiency, evidencing the impact of the individual auxiliary components on energy losses and dynamic stack performance. The book ends with the analysis of two practical case studies on fuel cell propulsion systems. Hydrogen Fuel Cells for Road Vehicles is a useful text for researchers, professionals and advanced students in the fields of automotive and environmental engineering.
260 2 Crew Legalities and Crew Pairing Repair 264 3 Model and Mathematical Formulation 266 4 Solution Methodology 271 5 Computational Experiences 277 6 Conclusion 285 REFERENCES 286 10 THE USE OF OPTIMIZATION TO PERFORM AIR TRAFFIC FLOW MANAGEMENT Kenneth Lindsay, E. Andrew Boyd, George Booth, and Charles Harvey 287 1 Introduction 288 2 The Traffic Flow Management (TFM) Problem 289 3 Recent TFM Optimization Models 292 4 The Time Assignment Model (TAM) 302 5 Summary and Conclusions 307 REFERENCES 309 11 THE PROCESSES OF AIRLINE SYSTEM OPERATIONS CONTROL Seth C. Grandeau, Michael D. Clarke, and Dennis F.X. Mathaisel 312 1 Introduction 313 2 The Four Phases of Airline Schedule Development 315 The Airline Operations Control Center (OCC) 3 320 4 Analysis of Operational Problems 331 5 Areas For Improvement 352 6 Case Study: PT Garuda Indonesia Airlines 357 REFERENCES 368 12 THE COMPLEX CONFIGURATION MODEL Bruce W. Patty and Jim Diamond 370 1 Introduction 370 Problem Description 2 371 Problem Formulation 3 375 4 Model Implementation 379 ix Contents 383 5 Summary REFERENCES 383 13 INTEGRATED AIRLINE SCHEDULE PLANNING Cynthia Barnhart, Fang Lu, and Rajesh Shenoi 384 1 Introduction 385 2 Fleet Assignment and Crew Pairing Problems: Existing M- els and Algorithms 388 3 An Integrated Approximate Fleet Assignment and Crew Pa- ing Model 393 4 An Advanced Integrated Solution Approach 395 5 Case Study 396 6 Conclusions and Future Research Directions 399 REFERENCES 401 14 AIRLINE SCHEDULE PERTURBATION PROBLEM: LANDING AND TAKEOFF WITH
In most organizations, errors - although common and unavoidable - are rarely mentioned bottom-up. Using this example of the high risk aviation industry this book assess how active error management can work and lead to success. Using academic research and 10 actual aviation accidents cases, this book will provide compelling and informative reading.
Transient Stability of Power Systems is a monograph devoted to a hybrid-direct temporal method called SIME (for Single Machine Equivalent). SIME processes temporal information about the multimachine system dynamics to assess and control any type of transient instabilities under any type and model of power systems. Two approaches may be distinguished depending upon the source of information used: 'Preventative SIME' which relies on a time-domain program to simulate anticipated contingencies, and 'Emergency SIME' which uses real-time measurements. Preventative SIME mainly comprises two techniques: contingency filtering, ranking, and assessment; and (simultaneous) stabilization of harmful contingencies. The resulting preventative transient stability assessment and control (TSA&C) software can be used in all application contexts of transient stability studies. In a control center, for instance, its computational performances enable it to cope with very stringent requirements of real-time operation. Besides, interfacing SIME with an OPF algorithm allows combining transient stability constraints with specifics of the liberalized electricity market.Emergency SIME is a novel closed-loop control technique which contains the transient instabilities caused by contingencies' actual occurrence. It relies on real-time measurements to predict (the size of) instability and, accordingly, to design and trigger control actions able to impede system loss of synchronism. Emergency SIME is particularly suitable for protecting important generation sites and can complement preventative SIME. Both approaches rely on the same principles and basic software which yields a comprehensive and unified approach to TSA&C. The design of near optimal control techniques is a major asset of this software. This book provides extensive illustrations on a variety of power systems ranging from a simple 3-machine test system to real-world power systems comprising up to 627 generators and 4112 busses. Transient Stability of Power Systems will be especially helpful to researchers, utility engineers, and software designers and developers who are developing various types of transient stability software packages.
Maritime transport has been the main driver of trade growth, and the emergence and development of a global economy. This collection of essays from distinguished economists and historians takes an international and comparative perspective, covering topics ranging from technological advance and the role of the state to maritime business development.
Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include:
L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Saifur Rahman, Rama Ramakumar, George Karady, Bill Kersting, Andrew Hanson, and Mark Halpin present substantially new and revised material, giving readers up-to-date information on core areas. These include advanced energy technologies, distributed utilities, load characterization and modeling, and power quality issues such as power system harmonics, voltage sags, and power quality monitoring. With six new and 16 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material. New chapters cover:
A volume in the Electric Power Engineering Handbook, Third Edition. Other volumes in the set:
This book presents extensions to current commodity-flow models to analyze the economic and environmental impacts of recent structural changes, such as fragmentation of production and lengthening supply chains. The extensions enable augmented commodity-flow models to analyze the vulnerability of supply chains and regions to climate change and extreme weather events. The models allow the explicit treatment of trade in intermediate goods; the so-called "new economic geography" behavioral foundations for production and inter-industry and interregional trade; endogenous determination of capital investment and employment; and changes in emissions associated with production, consumption and freight movement. Presenting a modeling framework and simulations that are based on a thirty-year, spatial time-series of inter-industry and interstate trade in the US, this unique book is a valuable resource for regional scientists, economic geographers and transportation modelers, as well as environmental and atmospheric scientists.
With its practical approach to design, Transformer and Inductor Design Handbook, Fourth Edition distinguishes itself from other books by presenting information and guidance that is shaped primarily by the user's needs and point of view. Expanded and revised to address recent industry developments, the fourth edition of this classic reference is re-organized and improved, again serving as a constant aid for anyone seeking to apply the state of the art in transformer and inductor design. Carefully considering key factors such as overall system weight, power conversion efficiency, and cost, the author introduces his own new equation for the power handling ability of the core, intended to give engineers faster and tighter design control. The book begins by providing the basic fundamentals of magnetics, followed by an explanation of design using the Kg or Ap techniques. It also covers subjects such as laminations, tape cores, powder cores and ferrites, and iron alloys. In addition, new topics include:
With the goal of making inductors that are lighter and smaller but still meet requirements, this book helps users avoid many antiquated rules of thumb, to achieve a better, more economical design. Presenting transformer design examples with step-by-step directions and numerous tables and graphics for comparison, it remains a trusted guide for the engineers, technicians, and other professionals who design and evaluate transformers and inductors. It also serves as an ideal primer for students, illustrating the field for them from the ground up.
Air Transport and the European Union examines the emergence of the EU as a major actor in aviation. It investigates how the EU was able to develop a common policy despite the existence of an established sectoral regime and against the opposition of most European states and their 'flag carriers'. |
You may like...
Model Predictive Control for Microgrids…
Jiefeng Hu, Josep Guerrero, …
Hardcover
Mechanical Design of Piezoelectric…
Qing-Song Xu, Lap Mou Tam
Paperback
R3,013
Discovery Miles 30 130
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
|