![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power generation & distribution
This book reports on the 12th International Workshop on Railway Noise held on 12-16 September 2016 at Terrigal, Australia. It gathers peer-reviewed papers describing the latest developments in rail noise and vibration, as well as state-of-the-art reviews by distinguished experts in the field. The papers cover a broad range of rail noise topics including wheel squeal, policy, regulation and perception, wheel and rail noise, predictions, measurements and monitoring, interior noise, rail roughness, corrugation and grinding, high speed rail and aerodynamic noise, and structure-borne noise, ground-borne vibration and resilient track forms. It offers an essential reference-guide to both scientists and engineers in their daily efforts to identify, understand and solve a number of problems related to railway noise and vibration, and to achieve their ultimate goal of reducing the environmental impact of railway systems.
This research book provides state-of-the-art advances in several areas of energy generation from, and environmental impact of, fuels and biofuels. It also presents novel developments in the areas of biofuels and products from various feedstock materials along with thermal management, emission control and environmental issues. Availability of clean and sustainable energy is of paramount importance in all applications of energy, power, mobility and propulsion. This book is written by internationally renowned experts from around the globe. They provide the latest innovations in cleaner energy utilization for a wide range of devices. The energy and environment sustainability requires a multipronged approach involving development and utilization of new and renewable fuels, design of fuel-flexible combustion systems and novel and environmentally friendly technologies for improved fuel use. This book serves as a good reference for practicing engineers, educators and research professionals.
This thesis investigates the key characteristics of magnetless doubly salient machines, evaluates their design philosophies, and proposes new topologies for various applications. It discusses the background of and previous research on magnetless machines, while also outlining upcoming trends and potential future developments. The thesis begins by presenting various torque-improving structures - namely the multi-tooth structure, the double-rotor (DR) structure, the axial-field (AF) structure, and the flux-reversal (FR) structure - for magnetless machines. It subsequently addresses the idea of merging the design philosophies of two different machines to form new dual-mode machines. Thanks to a reconfigured winding arrangement and controllable DC-field excitation, the proposed machines can further extend their operating range to meet the extreme demands of applications in electric vehicles and wind power generation. Lastly, the thesis employs the finite element method (FEM) to thoroughly analyze the proposed machines' key performance parameters and develops experimental setups to verify the proposed concepts.
This book presents a comprehensive overview of power-split device (PSD) design. It discusses vehicle energy consumption characteristics, hybrid vehicle power request solutions, typical configurations, operating principle and simulation technology of PSD hybrid system, a multi-factor integrated parametric design method and a dynamic coordinated control method for PSD hybrid system. It also describes the finite element analysis, thermal analysis and optimization of the PSD based on a surrogate model, explains the theory behind the design and the simulation, and provides concrete examples. It is a valuable resource for researchers and the engineers to gain a better understanding of the PSD design process.
This book is devoted to the systematic description of the role of microgeometry of modern piezo-active composites in the formation of their piezoelectric sensitivity. In five chapters, the authors analyse kinds of piezoelectric sensitivity for piezo-active composites with specific connectivity patterns and links between the microgeometric feature and piezoelectric response. The role of components and microgeometric factors is discussed in the context of the piezoelectric properties and their anisotropy in the composites. Interrelations between different types of the piezoelectric coefficients are highlighted. This book fills a gap in piezoelectric materials science and provides readers with data on the piezoelectric performance of novel composite materials that are suitable for sensor, transducer, hydroacoustic, energy-harvesting, and other applications.
This book will guide Photovoltaics researchers in a new way of thinking about harvesting light energy from all wavelengths of the solar spectrum. It closes the gap between general solar cells books and photovoltaics journal articles, by focusing on the latest developments in our understanding of solid-state device physics. The material presented is experimental and based on II-VI thin-film materials, mainly CdTe-based solar cells. The authors describe the use of new device design, based on multilayer graded bandgap configuration, using CdTe-based solar cells. The authors also explain how the photo-generated currents can be enhanced using multi-step charge carrier production. The possibility of fabricating these devices using low-cost and scalable electroplating is demonstrated. The value of electroplating for large area electronic devices such as PV solar panels, display devices and nano-technology devices are also demonstrated. By enabling new understanding of the engineering of electroplated semiconductor materials and providing an overview of the semiconductor physics and technology, this practical book is ideal to guide researchers, engineers, and manufacturers on future solar cell device designs and fabrications. Discusses in detail the processes of growths, treatments, solar cell device fabrication and solid state physics, improving readers' understanding of fundamental solid state physics; Enables future improvements in CdTe-based device efficiency; Explains the significance of defects in deposited semiconductor materials and interfaces that affect the material properties and resulting device performance.
This book presents the latest technologies and operational methods available to support sustainable freight transport practices. It highlights market requirements, cutting edge applications, and case studies from innovators in the logistics services industry. The goal is to help bridge the gap between advanced computational techniques and complex applied problems such as those in sustainable transport and logistics operations. Freight transport has traditionally focused on costs and service levels. However, it is no longer possible or socially responsible to neglect the environmental, social, climate, and energy implications of the freight moving globally. This book places sustainability at the forefront of the freight transport agenda. Sustainable Freight Transport: Theory, Models and Case Studies is divided into three sections. Section I focuses on green freight transport policies for air and marine ports. Section II is devoted to using modelling techniques and optimization for achieving sustainable freight transport, while Section III examines policies to support sustainable freight transport practices in urban areas. The contributions come from authors from different areas, backgrounds, and countries to cover a global perspective.
This book provides an interdisciplinary account of how technological advances - mainly in the domains of energy and transportation - contribute to the transformation towards a more sustainable economic system. Drawing on methods from engineering, the management sciences and economics, which it combines in the framework of a systems sciences approach, the book presents qualitative and quantitative studies on government regulation, resources management and firms' strategy. Topics covered include the state-market dilemma of government CO2 emission targets, implications of the electrification of the economy, incentives and coercion in government transport policies, and innovations in the electric vehicle industry.
This book is aimed at all those who are interested to understand the current research going on in nanomaterial science from the perspectives of biomedical, sensorial and energy applications including all aspects of physical chemist, chemical engineers and material scientist. Nanoscience and nanotechnology are at the forefront of modern research. The fast growing economy in this area requires experts with outstanding knowledge of nanoscience in combination with the skills to apply this knowledge in new products. A multidisciplinary scientific education is crucial to provide industry and research institutes with top quality experts who have a generic background in the different sub disciplines such as electronics, physics, chemistry, material science, biotechnology. The book covers recent advancement in nanoscience and nanotechnology particularly highlights the utilization of different types of nanomaterials in biomedical field, sensor and in the energy application. On the other hand, it leads the reader to the most significant recent developments in research. It provides a broad and in-depth coverage of the nanoscale materials and its depth significant applications.
This is the fifth volume of a sub series on Road Vehicle Automation published within the Lecture Notes in Mobility. Like in previous editions, scholars, engineers and analysts from all around the world have contributed chapters covering human factors, ethical, legal, energy and technology aspects related to automated vehicles, as well as transportation infrastructure and public planning. The book is based on the Automated Vehicles Symposium which was hosted by the Transportation Research Board (TRB) and the Association for Unmanned Vehicle Systems International (AUVSI) in San Francisco, California (USA) in July 2017.
The 13th volume of ToPNoC contains revised and extended versions of a selection of the best workshop papers presented at the 38th International Conference on Application and Theory of Petri Nets and Concurrency, Petri Nets 2017, and the 17th International Conference on Application of Concurrency to System Design, ACSD 2017. The 9 papers cover a diverse range of topics including model checking and system verification, refinement, and synthesis; foundational work on specific classes of Petri nets; and innovative applications of Petri nets and other models of concurrency. Application areas covered in this volume are: fault-tolerance, service composition, databases, communication protocols, business processes, and distributed systems. Thus, this volume gives a good overview of ongoing research on concurrent systems and Petri nets.
The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.
These proceedings collect selected papers from the 7th International Conference on Green Intelligent Transportation System and Safety held in Nanjing on July 1-4, 2016. The selected works, which include state-of-the-art studies, are intended to promote the development of green mobility and intelligent transportation technology to achieve interconnectivity, resource sharing, flexibility and higher efficiency. They offer valuable insights for researchers and engineers in the fields of Transportation Technology and Traffic Engineering, Automotive and Mechanical Engineering, Industrial and System Engineering, and Electrical Engineering.
This book is the fourth volume of the sub series of the Lecture Notes in Mobility dedicated to Road Vehicle Automation. lts chapters have been written by researchers, engineers and analysts from all around the globe. Topics covered include public sector activities, human factors and challenges, ethical, legal, energy and technology perspectives, vehicle systems development, as well as transportation infrastructure and planning. The book is based on the Automated Vehicles Symposium which took place in San Francisco, California (USA) in July 2016.
This book details aluminum alloys with special focus on the aluminum silicon (Al-Si) systems - that are the most abundant alloys second only to steel. The authors include a description of the manufacturing principles, thermodynamics, and other main characteristics of Al-Si alloys. Principles of processing, testing, and in particular applications in the Automotive, Aeronautical and Aerospace fields are addressed.
This book provides a thorough overview of cutting-edge research on electronics applications relevant to industry, the environment, and society at large. It covers a broad spectrum of application domains, from automotive to space and from health to security, while devoting special attention to the use of embedded devices and sensors for imaging, communication and control. The book is based on the 2016 ApplePies Conference, held in Rome, Italy in September 2016, which brought together researchers and stakeholders to consider the most significant current trends in the field of applied electronics and to debate visions for the future. Areas addressed by the conference included information communication technology; biotechnology and biomedical imaging; space; secure, clean and efficient energy; the environment; and smart, green and integrated transport. As electronics technology continues to develop apace, constantly meeting previously unthinkable targets, further attention needs to be directed toward the electronics applications and the development of systems that facilitate human activities. This book, written by industrial and academic professionals, represents a valuable contribution in this endeavor.
This book introduces readers to essential technology assessment and forecasting tools, demonstrating their use on the basis of multiple cases. As organizations in the high-tech industry need to be able to assess emerging technologies, the book presents cases in which formal decision-making models are developed, providing a framework for decision-making in the context of technology acquisition and development. Applications of different technology forecasting tools are also discussed for a range of technologies and sectors, providing a guide to keep R&D organizations abreast of technological trends that affect their business. As such, the book offers a valuable the theoretical and practical reference guide for R&D managers responsible for emerging and future technologies.
Shock & Vibration, Aircraft/Aerospace and Energy Harvesting, Volume 9: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics, 2017, the ninth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Shock & Vibration, Aircraft/Aerospace and Energy Harvesting including papers on: Shock & Vibration Testing Aircraft/Aerospace Applications Optical Techniques: Digital Image Correlation Vibration Suppression & Control Damage Detection Energy Harvesting
This thesis describes the working design principles of triboelectric mechanism-based devices. It presents an extensive study undertaken to explain the effect of surface topographies on the performance of triboelectric nanogenerators. It demonstrates the application of triboelectric mechanisms in the area of physical sensing such as force sensing and pressure sensing. It also discusses the major fabrication methods/techniques that can be used to realize these devices. It is a valuable reference resource for graduate students, researchers and scientists interested in exploring the potential of triboelectric mechanisms for energy harvesting and other applications.
This book written by a world-renowned expert with more than forty years of active gas turbine R&D experience comprehensively treats the design of gas turbine components and their integration into a complete system. Unlike many currently available gas turbine handbooks that provide the reader with an overview without in-depth treatment of the subject, the current book is concentrated on a detailed aero-thermodynamics, design and off-deign performance aspects of individual components as well as the system integration and its dynamic operation.This new book provides practicing gas turbine designers and young engineers working in the industry with design material that the manufacturers would keep proprietary. The book is also intended to provide instructors of turbomachinery courses around the world with a powerful tool to assign gas turbine components as project and individual modules that are integrated into a complete system. Quoting many statements by the gas turbine industry professionals, the young engineers graduated from the turbomachinery courses offered by the author, had the competency of engineers equivalent to three to four years of industrial experience.
This book focuses on the use of nanotechnology in several fields of engineering. Among others, the reader will find valuable information as to how nanotechnology can aid in extending the life of component materials exposed to corrosive atmospheres, in thermal fluid energy conversion processes, anti-reflection coatings on photovoltaic cells to yield enhanced output from solar cells, in connection with friction and wear reduction in automobiles, and buoyancy suppression in free convective heat transfer. Moreover, this unique resource presents the latest research on nanoscale transport phenomena and concludes with a look at likely future trends.
This monograph presents urban simulation methods that help in better understanding urban dynamics. Over historical times, cities have progressively absorbed a larger part of human population and will concentrate three quarters of humankind before the end of the century. This "urban transition" that has totally transformed the way we inhabit the planet is globally understood in its socio-economic rationales but is less frequently questioned as a spatio-temporal process. However, the cities, because they are intrinsically linked in a game of competition for resources and development, self organize in "systems of cities" where their future becomes more and more interdependent. The high frequency and intensity of interactions between cities explain that urban systems all over the world exhibit large similarities in their hierarchical and functional structure and rather regular dynamics. They are complex systems whose emergence, structure and further evolution are widely governed by the multiple kinds of interaction that link the various actors and institutions investing in cities their efforts, capital, knowledge and intelligence. Simulation models that reconstruct this dynamics may help in better understanding it and exploring future plausible evolutions of urban systems. This would provide better insight about how societies can manage the ecological transition at local, regional and global scales. The author has developed a series of instruments that greatly improve the techniques of validation for such models of social sciences that can be submitted to many applications in a variety of geographical situations. Examples are given for several BRICS countries, Europe and United States. The target audience primarily comprises research experts in the field of urban dynamics, but the book may also be beneficial for graduate students.
This thesis presents the fundamental research and latest findings on novel flexible/wearable photovoltaic technology, and comprehensively summarizes the rapid developments in flexible photovoltaics, from traditional planar solar cells to fiber solar cells. It discusses the rational design of fiber solar cell materials, electrodes and devices, as well as critical factors including cost, efficiency, flexibility and stability . Furthermore, it addresses fundamental theoretical principles and novel fabrication technologies and their potential applications. The book provides practical information for university researchers and graduate students interested in flexible fiber photovoltaics, and inspires them to design other novel flexible/wearable electronics and textiles.
This book outlines issues related to massive integration of electric and plug-in hybrid electric vehicles into power grids. Electricity is becoming the preferred energy vector for the next new generation of road vehicles. It is widely acknowledged that road vehicles based on full electric or hybrid drives can mitigate problems related to fossil fuel dependence. This book explains the emerging and understanding of storage systems for electric and plug-in hybrid vehicles. The recharging stations for these types of vehicles might represent a great advantage for the electric grid by facilitating integration of renewable and distributed energy production. This book presents a broad review from analyzing current literature to on-going research projects about the new power technologies related to the various charging architectures for electric and plug-in hybrid vehicles. Specifically focusing on DC fast charging operations, as well as, grid-connected power converters and the full range of energy storage systems. These key components are analyzed for distributed generation and charging system integration into micro-grids. The authors demonstrate that these storage systems represent effective interfaces for the control and management of renewable and sustainable distributed energy resources. New standards and applications are emerging from micro-grid pilot projects around the world and case studies demonstrate the convenience and feasibility of distributed energy management. The material in this unique volume discusses potential avenues for further research toward achieving more reliable, more secure and cleaner energy.
This edited volume discuses urban transport issues, policies, and initiatives in twelve of the world's major emerging economies - Brazil, China, Colombia, India, Indonesia, Iran, Mexico, Nigeria, Russia, South Africa, Turkey, and Vietnam - countries with large populations that have recently experienced large changes in urban structure, motorization and all the associated social, economic, and environmental impacts in positive and negative senses. Contributions on each of these twelve countries focus on one or more major cities per country. This book aims to fill a gap in the transport literature that is crucial to understanding the needs of a large portion of the world's urban population, especially in view of the southward shift in economic power. Readers will develop a better understanding of urban transport problems and policies in nations where development levels are below those of richer countries (mainly in the northern hemisphere) but where the rate of economic growth is often increasing at a faster rate than the wealthiest nations. |
You may like...
Current Topics in Summability Theory and…
Hemen Dutta, Billy E Rhoades
Hardcover
R3,561
Discovery Miles 35 610
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
Distributed and Parallel Systems - From…
Peter Kacsuk, Gabriele Kotsis
Hardcover
R5,273
Discovery Miles 52 730
|